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Multipartite entanglement is an essential resource for quantum communication, quantum com-
puting, quantum sensing, and quantum networks. The utility of a quantum state, |ψ〉, for these
applications is often directly related to the degree or type of entanglement present in |ψ〉. Therefore,
efficiently quantifying and characterizing multipartite entanglement is of paramount importance. In
this work, we introduce a family of multipartite entanglement measures, called Concentratable En-
tanglements. Several well-known entanglement measures are recovered as special cases of our family
of measures, and hence we provide a general framework for quantifying multipartite entanglement.
We prove that the entire family does not increase, on average, under Local Operations and Classical
Communications. We also provide an operational meaning for these measures in terms of proba-
bilistic concentration of entanglement into Bell pairs. Finally, we show that these quantities can be
efficiently estimated on a quantum computer by implementing a parallelized SWAP test, opening
up a research direction for measuring multipartite entanglement on quantum devices.

Introduction. The presence of entanglement in quan-
tum states is widely recognized as one of, if not the, defin-
ing property of quantum mechanics [1]. Since the devel-
opment of quantum information theory [2, 3] it was re-
alized that entanglement is a fundamental resource [4, 5]
for quantum communications [6–9], quantum cryptogra-
phy [10, 11], and quantum computing [12–14]. Recent ad-
vances in quantum control technologies have made it pos-
sible to harness the power of entanglement for quantum-
enhanced sensing [15–17] and communications [18–20],
and for showing quantum advantage using near-term
quantum computers [21]. While the ubiquity of entan-
gled quantum states as a resource is clear, their utility
for these applications often depends on the degree of en-
tanglement in the quantum state.

The nature of quantum entanglement is well under-
stood for bipartite pure quantum states [2, 13, 22]. How-
ever, the same cannot be said for the multipartite en-
tanglement of pure states [23], where the complexity of
entanglement scales exponentially with the number of
parties. In fact, already for a system of three qubits
there exists two different, and inequivalent, types of gen-
uine tripartite entanglement, such that states of the two
different kinds cannot be exactly transformed onto the
other via the action of Local Operations and Classical
Communications (LOCC) [24]. While the study of mul-
tipartite entanglement has received considerable atten-
tion [25–33] there does not exist a single unambiguous
way to detect, quantify and characterize multipartite en-
tanglement. Hence, improving our knowledge on the
nature of the entanglement between multiple parties is
not only crucial to better understanding the underlying
structure of quantum mechanics, but it is also a fun-
damental step towards enhancing emergent technologies
such as distributed quantum sensing [34], longer baseline
telescopes [35], and various quantum internet applica-

tions [36–38].
The advent of quantum computing technologies brings

forth the possibility of verifying and characterizing the
multipartite entanglement present in states prepared on
these near-term quantum devices. In this context, en-
tanglement measures that are not only theoretically rel-
evant, but that can also be estimated via quantum al-
gorithms [31, 39–44], become particularly attractive as
characterization tools. For instance, it was shown [29, 45]
that given an n-qubit state |ψ〉, the linear entropies
1
2

(
1− Trρ2j

)
of the single-qubit reduced states ρj can be

used to study the entanglement in |ψ〉. Moreover, since
the SWAP test [46–50] can be used to compute linear
entropies, these measures can be efficiently estimated on
quantum computers or optical quantum devices.

In this work, we introduce a family of quantities, called
Concentratable Entanglements, which characterize and
quantify the multipartite entanglement in an arbitrary
n-qubit pure state |ψ〉. We first prove that each Con-
centratable Entanglement does not increase, on average,
under LOCC operations, and hence forms an entangle-
ment monotone. Then, we show that by combining Con-
centratable Entanglements one can obtain several quan-
tities of interest, which can quantify properties such as
the entanglement in, and between, subsystems, as well
as the total entanglement in |ψ〉. We then discuss how
these quantities can be efficiently estimated on a quan-
tum computer given two copies of |ψ〉, and employing
constant-depth n-qubit parallelized SWAP tests. Finally,
we discuss the operational meaning of the Concentratable
Entanglement as the probability of obtaining Bell pairs
between qubits in the different copies of |ψ〉.

Our results generalize previous results in the literature
in the sense that: (1) several entanglement measures cor-
respond to a special case of the Concentratable Entan-
glements [28, 29, 32, 45, 51], (2) we prove a conjecture



2

in Ref. [42], where it was hypothesized that the paral-
lelized SWAP test can provide the basis for constructing
a pure state multipartite entanglement monotone. Fi-
nally, the broader implication of our work is to promote
a research direction of studying multipartite entangle-
ment using quantum devices, such as cloud-based quan-
tum computers.

Concentratable Entanglement. Consider an n-qubit
pure quantum state |ψ〉. We denote S = {1, 2, . . . , n}
as the set of labels for each qubit, and P(S) as its power
set (i.e., the set of subsets, with cardinality |S| = 2n). We
introduce the Concentratable Entanglements as a family
of entanglement monotones that characterize and quan-
tify the multipartite entanglement in |ψ〉.

Definition 1. For any set of qubit labels s ∈ P(S)\{∅},
the Concentratable Entanglement is defined as

C|ψ〉(s) = 1− 1

2c(s)

∑
α∈P(s)

Trρ2α , (1)

where c(s) is the cardinality of the set s, and P(s) its
power set. Here we denote by ρα the joint reduced state,
associated to |ψ〉, of the subsystems labeled by the ele-
ments in α (with α = ∅ leading to ρα := 1).

Equation (1) shows that each C|ψ〉(s) is the average
of the entanglement between the subsets of qubits with
labels in s and the rest of the system. This means
that different Concentratable Entanglements can mea-
sure both bipartite and multipartite entanglements ac-
cording to how s is defined. For instance taking the small-
est set possible, i.e., s = {j} with j = 1, . . . , n, one finds
C|ψ〉({j}) = 1

2

(
1− Trρ2j

)
. Thus, when averaged over {j},

one recovers the measures in [29, 45] which quantify the
bipartite entanglement between the j-th qubit and the
rest. On the other hand, taking the largest set possible,
i.e., s = S, C|ψ〉(S) quantifies the overall entanglement in
|ψ〉 across all cuts, and as discussed below, this case corre-
sponds to the entanglement measure conjectured in [42].
Moreover, in this case we also recover the entanglement
measure of [51] as a special case of the Concentratable
Entanglements. Including these extremal cases, there are
a total of 2n−1 Concentratable Entanglements according
to Definition 1.

Efficient Computation. A fundamental aspect of the
Concentratable Entanglements is that they can be effi-
ciently estimated on a quantum computer. While each
purity, Tr[ρ2α], in (1) can be computed via an overlap
test [49], one can also use two copies of the state |ψ〉
and n ancilla qubits to employ the n-qubit parallelized
SWAP test depicted in Fig. 1 (see Supplementary Infor-
mation for a discussion on the SWAP test). From Fig. 1,
it is clear that the k-th ancilla qubit is used to perform
a controlled SWAP test on the k-th qubit of each copy
of |ψ〉. The tests are independent and thus factorizable.
This implies that the n-qubit parallelized SWAP test has
a constant circuit depth for any number of qubits.

FIG. 1. Circuit for the n-qubit parallelized SWAP
test. Given two copies of the quantum state |ψ〉,and n an-
cilla qubits, the n-qubit parallelized SWAP test consists of
employing the k-th ancilla to perform a controlled swap test
on the k-th qubit of each copy of |ψ〉. Since the n SWAP test
can be factorized, one can perform them in parallel, leading
to a constant depth circuit.

Given the n-qubit parallelized SWAP test, we define
the following relevant quantities. First, let p(z) be the
probability of measuring the z bitstring on the n control
qubits, and let Z = {0, 1}n be the set of all such bit-
strings. Then, the following proposition (proved in the
Supplementary Information [52]) holds.

Proposition 1. The Concentratable Entanglement can
be computed from the outcomes of the n-qubit parallelized
SWAP test as

C|ψ〉(s) = 1−
∑

z∈Z0(s)

p(z) , (2)

where Z0(s) is the set of all bitstrings with 0’s on all
indices in s.

Proposition 1 shows that C|ψ〉(s) can be computed by
performing the parallelized SWAP test on all qubits and
adding the probabilities where the control qubits with in-
dices in s are measured in the |0〉 state. Since this corre-
sponds to a conditional probability, one can also perform
SWAP tests only on the qubits with indexes in s (re-
quiring just c(s) ancillary qubits) and express the Con-
centratable Entanglement as C|ψ〉(s) = 1 − p(0x). Here
p(0x) =

∑
z∈Z0(s)

p(z) denotes the probability of obtain-
ing the all-zero result from the SWAP test on the qubits
with labels in s.

Here we remark that Eqs. (1) and (2) are complimen-
tary in the sense that the number of terms in the summa-
tions are inversely proportional. That is, the summation
in Eq. (1) contains 2c(s) terms, while that of (2) contains
2n−c(s) terms. Hence, we remark that it is preferable
to employ Eq. (2) when analyzing multipartite entan-
glement, as this avoids potentially having to compute a
prohibitively large number of purities as those required
in other entanglement measures [53]. For instance, if
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(n− c(s)) ∈ O(log(n)) then (2) only contains number of
terms in O(poly(n)). For the purpose of analyzing mul-
tipartite entanglement we henceforth focus on Eq. (2).

Finally, we remark, that, as shown in the Supplemen-
tary Information, the SWAP test still works when the
two copies of |ψ〉 are not exactly the same. Specifically,
let |ψ〉 and |ψ′〉 be two faulty copies of the state with
‖|ψ〉〈ψ| − |ψ′〉〈ψ′|‖1 6 ε, then, we find that the error in
the Concentratable Entanglement is upper-bounded by
O(ε2), indicating that small errors in the state lead to
small Concentratable Entanglement difference.

Properties of C|ψ〉(s). We now present our main re-
sults which provide properties and additional insight for
the Concentratable Entanglements. The proofs of these
results are provided in the Supplementary Information.

Theorem 1. The Concentratable Entanglement has the
following properties:

1. C|ψ〉(s) is non-increasing, on average, under LOCC
operations and hence is a well-defined pure state
entanglement measure.

2. If |ψ〉 is a separable state of the form |ψ〉 =⊗n
j=1 |φj〉, then C|ψ〉(s) = 0 for all s ∈ P(S) \ {∅}.

3. C|ψ〉(s′) 6 C|ψ〉(s) if s′ ⊆ s.

4. Subadditivity, C|ψ〉(s ∪ s′) 6 C|ψ〉(s) + C|ψ〉(s′) for
s ∩ s′ = ∅.

5. Continuity, let |ψ〉 and |φ〉 be two states such that
‖|ψ〉〈ψ|− |φ〉〈φ|‖1 6 ε, then |C|ψ〉(s)−C|φ〉(s)| 6 2ε.

Here, 3) guarantees that the Concentratable Entan-
glement always measures less entanglement in any sub-
system of s. In addition, we remark that combining
3) and 4) we have {C|ψ〉(s), C|ψ〉(s′)} 6 C|ψ〉(s ∪ s′) 6
C|ψ〉(s) + C|ψ〉(s′) for s ∩ s′ = ∅.

To further understand the Concentratable Entangle-
ments measures entanglement, we provide additional de-
tails on the probabilities p(z). First, consider the follow-
ing explicit formula for the probabilities p(z).

Proposition 2. Given the expansion of the state |ψ〉 =∑
i ci|i1〉|i2〉 · · · |in〉, the probability p(z) for any z ∈ Z

is given by

p(z) =
1

2n

∑
i,i′,j,j′

cici′c
∗
jc
∗
j′Tii′jj′(z) , (3)

where Tii′jj′(z) =
∏
k(δikjkδi′kj′k + (−1)zkδikj′kδi′kjk), and

where zk denotes the k-th bit in z.

Alternatively, one can also express p(z) as a function of
purities of reduced states of |ψ〉. Let us define as w(z) the
Hamming weight of z, and let S1 ⊆ S be the set of labels
for the bits in z that are equal to 1 (with |S1| = w(z)).
Finally, let chs be the cardinality of Sh ∩ s. One finds

p(z) =
1

2n

∑
s∈P(S)

(−1)chsTr ρ2x . (4)

Equation (4) leads to the following proposition.

Proposition 3. If z has odd Hamming weight (if w(z)
is odd), then p(z) = 0.

Proposition 3 has several implications. First, one can
see that by performing the n-qubit parallelized SWAP
test, one can never measure a bitstring with an odd num-
ber of ones. Then, the formula for the Concentratable
Entanglements in Proposition 1 can be expressed as

C|ψ〉(s) =
∑

z∈Zeven
1 (s)

p(z) , (5)

where we recall that Z0(s) was defined as the set of all
bitstrings with 0’s on all indices in s, and where we re-
spectively define Zeven

1 (s) and Zodd
1 (s) as the compli-

ments of Z0(s) with even and odd Hamming weight,
such that Z0(s) ∪ Zeven

1 (s) ∪ Zodd
1 (s) = Z. Simply

said, Zeven
1 (s) is the set of bitstrings with even Ham-

ming weight and with at least a 1 in an index in s.
For instance, if s = S (i.e., when the Concentratable
Entanglement measures all the correlations in |ψ〉) then
C|ψ〉(S) = 1 − p(0) =

∑
z:w(z) even p(z), and we recover

exactly the conjectured measure of entanglement of [42].
Equation (5) shows that the information of the mul-

tipartite entanglement in |ψ〉 is encoded in the proba-
bilistic outcomes of the n-qubit parallelized SWAP test
when an even number of control qubits are measured in
the |1〉 state. For instance, the probability of measur-
ing a bitstring with Hamming weight w(z) = 2, where
zk = zk′ = 1 contains information regarding the bipar-
tite entanglement between qubits k and k′. Specifically,
the following proposition holds.

Proposition 4. Let |ψ〉 be a bi-separable state |ψ〉 =
|ψ〉A⊗|ψ〉B. Then for any bitstring z of Hamming weight
w(z) = 2, where zk = zk′ = 1 we have p(z) = 0 if qubit
k is in subsystem A, and qubit k′ is in subsystem B.

Proposition 4 can be generalized to show that the prob-
ability of measuring a bitstring with Hamming weight
w(z) contains information regarding the entanglement
between the qubits with labels in S1. That is, one can
prove that p(z) is equal to zero if the qubits in S1 belong
to non-entangled partitions of |ψ〉.

Here we remark that while the p(z) contain informa-
tion regarding the multipartite entanglement in |ψ〉, these
probabilities are generally not entanglement monotones.
The exception being p(1) when n is even, i.e., the proba-
bility of measuring all the control qubits in the |1〉 state.
For this special case we find the following.

Proposition 5. If n is even, then p(1) is an entangle-
ment monotone. Moreover, in this case p(1) = τ(n)/2

n.
where τ(n) is the n-tangle.

The n-tangle was introduced in [28] as a measure of
multipartite entanglement in n-qubits states that gener-
alizes the Concurrence [54, 55]. The n-tangle of a pure
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FIG. 2. Protocol for concentrating entanglement.
Given two copies of |ψ〉, one can employ the n-qubit par-
allelized SWAP test to prepare Bell pairs between qubits
in the different copies of |ψ〉. Specifically, measuring the
k-th control qubit in the state |1〉 implies that the joint
state of the k-th qubit of each copy of |ψ〉 is the Bell state
|Φ−〉 = 1√

2
(|01〉 − |10〉). Hence, a single run of the n-qubit

parallelized SWAP test has a probability p(z) of concentrat-
ing the multipartite entanglement in the copies of |ψ〉 and
producing w(z) Bell pairs.

state |ψ〉 is τ(n) = |〈ψ | ψ̃〉|2, with |ψ̃〉 = σ⊗ny |ψ∗〉 where σy
is the Pauli-Y operator, and |ψ∗〉 is the conjugate of |ψ〉.
Hence, for the special case of two-qubits one finds that
C|ψ〉(s) = τ(2)/4 = C2/4 for all s ∈ P(S), where here
C denotes the Concurrence [54]. In general, we see from
Proposition 5 that n-tangle is always one of the terms in
the summation of Eq. (5), and hence is included in the
Concentratable Entanglements.

Interestingly, p(z) can also be interpreted as the proba-
bility of concentrating the entanglement in the two copies
of |ψ〉 and “distilling” Bell pairs.

Proposition 6. Given two copies of |ψ〉, if the k-th con-
trol qubit of the n-qubit parallelized SWAP test was mea-
sured in the state |1〉, then the joint post-measured state
of the k-th qubits of each copy of |ψ〉 is the Bell state
|Φ−〉 = 1√

2
(|01〉 − |10〉).

Proposition 6 shows that when one measures (with
probability p(z)) a bitstring z with (even) Hamming
weight w(z), then one has produced w(z) Bell pairs be-
tween qubits in the different copies of |ψ〉 with indices in
Sh. This protocol is schematically shown in Fig. 2. In
addition, Proposition 6 also sheds additional light on the
Concentratable Entanglement C|ψ〉(s) as the probability
of obtaining any of the qubits pairs with labels in s in a
Bell pair when performing a SWAP test.

FIG. 3. Comparison of the Concentratable Entangle-
ments for GHZ and W states. In the figure we show the
difference C|GHZ〉(s)−C|W 〉(s) versus the number of qubits n
for different sets s with cardinalities c(s) = 1, 2, n/2, n− 1, n.
In all cases we find C|GHZ〉(s) > C|W 〉(s).

Examples. Let us now showcase how the probabili-
ties p(z) and the Concentratable Entanglement can be
used to characterize and quantify the multipartite entan-
glement in n-qubit W and GHZ states. First, let us
consider the W -state |W 〉 = 1√

n

∑
x:w(x)=1 |x〉, i.e., the

equal superposition of all states with Hamming weight
equal to one. A direct calculation shows that p(z) = 1

n2

for all z with w(z) = 2 and p(z) = 0 for all z with
w(z) > 2. That is, in (5) one can only have terms
where z has only two ones. Concomitantly, when em-
ploying the n-qubit parallelized SWAP test one can-
not concentrate the multipartite entanglement in |W 〉
to simultaneously produce more than two Bell pairs.
Then, noting that for a given s there are

∑c(s)
µ=1

(
n−µ
1

)
=

c(s)(2n − c(s) − 1)/2 non-zero terms in (5), one finds
C|W 〉(s) = c(s)(2n− c(s)− 1)/2n2.

On the other hand, consider the GHZ state |GHZ〉 =
1√
2

(|0〉+ |1〉). We now find p(z) = 1
2n for all

z with (even) Hamming weight w(z) > 2. Un-
like the W -state, when employing the n-qubit paral-
lelized SWAP test one can obtain up to n simulta-
neous Bell pairs. In this case, given s, there are∑c(s)
µ=1

∑(n−µ+1)/2
ν=1

(
n−µ
2ν−1

)
non-zero terms in (5), leading

to C|GHZ〉(s) = 1
2

(
1− 1/(2c(s)−δc(s)n)

)
, where the δc(s)n

arises from the fact that c(n) = n and c(n) = n− 1 have
the same number of terms. Note that, as expected, both
C|W 〉(s) and C|GHZ〉(s) only depend on the cardinality of
s and not on the actual indices in the set, as both states
are invariant under permutations of the qubits.

We can now show that when s = {j} (c(s) = 1), then
C|W 〉({j}) = n−1

n2 and C|GHZ〉({j}) = 1
4 . This implies

that the bipartite entanglement of a single qubit in |W 〉
decreases with n, while on the other hand is constant for
any n-qubit |GHZ〉 state. Moreover, if s = S (c(s) = n),
then C|W 〉(S) = n−1

2n and C|GHZ〉(S) = 1
2 −

1
2n , and we

recover the results in [42]. Note that for both cases con-
sidered one finds that C|GHZ〉(s) > C|W 〉(s), and hence
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that the Concentrable Entanglements detect more multi-
partite entanglement in |GHZ〉 than in |W 〉. For s = S,
however, in the limit of n → ∞ both C|GHZ〉(s) and
C|W 〉(s) tend to the same value of 1

2 . Lastly, we note
that a property of W states is that if one qubit is mea-
sured and projected out of the state, one can still mea-
sure entanglement in the ensuing state. Specifically, if
one measures a qubit, then the concentratable entangle-
ment will be equal to c(s)(2n− c(s)− 3)/2(n− 1)2 (to 0)
with probability 1− 1/n2 (1/n2), as this corresponds to
measuring the qubit in the zero (one) state. However, for
GHZ states, projecting out just one qubit always yields
a state with zero concentratable entanglement – confirm-
ing the well-known fact that while the W state is less
entangled than the GHZ, it is more robust to noise.

In Fig. 3 we further analyze the difference ∆C =
C|GHZ〉(s)− C|W 〉(s) for different cardinalities of s. Here
we see that for c(s) 6 n/2, ∆C increases (or remains con-
stant) as n increases implying that, again, small subsys-
tems of qubits in |W 〉 contain less multipartite entangle-
ment than those in |GHZ〉. For c(s) ∼ n, the difference
∆C decreases as n increases, showing that the total mul-
tipartite entanglement is asymptotically the same for the
two states.

Conclusion. In this work, we introduced a com-
putable and operationally meaningful family of entan-
glement monotones called the Concentratable Entangle-
ments. For a pure state |ψ〉, these quantities can be
estimated on a quantum computer given two copies of
|ψ〉 via a parallelized SWAP test. We showed that they
quantify and characterize the entanglement in and be-
tween subsystems of the composite quantum state in ad-
dition to quantifying global entanglement. We derived
their operational meaning in terms of the probability of
obtaining Bell pairs via the parallelized SWAP test. We
also showed that well-known entanglement measures such

as the n-tangle, Concurrence, and linear entropy of en-
tanglement are recovered as special cases of Concentrat-
able Entanglements. As a special case of our results, we
proved a conjecture from Ref. [42], which claimed that
the parallelized SWAP test could be used to quantify
and categorize pure state multipartite entanglement.

An important future direction will be to experimen-
tally observe our entanglement measures on real quantum
devices (e.g., using a quantum optical Fredkin gate [56]).
A detailed analysis of the impact of hardware noise on
the parallelized SWAP test will be useful for such im-
plementations. As noise can turn pure states into mixed
states, an additional important direction will be to gen-
eralize our entanglement measures (and their operational
meaning) to mixed states. Finally, one could also ana-
lyze is a swap test with more copies of |ψ〉 can provide
further information beyond that in the Concentratable
Entanglement.
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