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Because the normal operation of the eye depends on sensitive morphogenetic processes for its
eventual shape, developmental flaws can lead to wide-ranging ocular defects. However, the physical
processes and mechanisms governing ocular morphogenesis are not well understood. Here, using
analytical theory and nonlinear shell finite-element simulations, we show for optic vesicles experi-
encing matrix-constrained growth that elastic instabilities govern the optic cup morphogenesis. By
capturing the stress amplification owing to mass increase during growth, we show that the morpho-
genesis is driven by two elastic instabilities analogous to the snap-through in spherical shells, where
the second instability is sensitive to the optic cup geometry. In particular, if the optic vesicle is
too slender, it will buckle and break axisymmetry, thus preventing normal development. Our re-
sults shed light on the morphogenetic mechanisms governing the formation of a functional biological
system, and the role of elastic instabilities in the shape selection of soft biological structures.

Eye development is a complex, multi-scale morpho-
genetic process that couples cell growth and division, and
biological signaling at cellular scales, with large defor-
mation and shape changes. The eye organogenesis be-
gins with formation of the optic vesicles (OV), nearly
spherical shells that undergo invagination – a process
that locally reverses the curvature of tissues from con-
vex to concave [1], to form the optic cup (OC), a cav-
ity that eventually houses the eye. It is well–established
that many congenital eye disorders arise from disruptions
in embryonic eye development, including anophthalmia
or microphthalmia [2], aniridia [3], coloboma [4], retinal
dysplasia [5], and retinal detachment [6].

In the embryonic stage of eye development, the OV bi-
laterally protrudes from the forebrain and contacts the
surface ectoderm (SE). The OV and the SE epithelium
are attached to each other through the stiff extracellu-
lar matrix (ECM) secreted by both SE and OV, which
thickens to form the lens placode and retinal placode.
These placodes invaginate, such that curvature of the in-
ner portion of the OV (iOV) changes sign compared to
its outer portion (oOV) as shown in Fig. 1a, to form the
lens vesicle and OC, respectively [7, 8]. Despite recent ef-
forts [9, 10], important questions remain open as to what
mechanisms govern OC morphogenesis during and after
invagination [5, 11–17] and how growth of the iOV and
oOV, and evolution of their mechanical properties impact
the morphogenetic processes.

In this Letter, we advance two novel points that con-
tribute to the physics of OC morphogenesis. First, the
morphogenetic process is driven by two elastic instabil-
ities that are analogous to snap-through instabilities in
spherical shells. These occur at different times during OC
development, corresponding to invagination and rapid
deepening observed in biological experiments [13, 18].
Second, we demonstrate that the second morphogenetic
instability is sensitive to OC geometry. Specifically, for
certain geometries the OC buckles rather than snaps
during the second instability, which breaks axisymme-
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FIG. 1. (a) Simplified schematic of the OC morphogenesis.
(b) thickness change ratio of iOV center wall λiOV as function
of the normalized time tn. (c) invagination depth D normal-
ized by OC horizontal radius r as function of tn. (b) and
(c) show comparisons of our model with existing experimen-
tal data [9], using R/h = 5 and α = 40◦ with primary and
secondary invagination at t1stn and t2nd

n .

try, and prevents normal OC morphogenesis. This re-
sult suggests that some congenital eye disorders, such as
glaucoma in newborn infants [19], may be due to OC
geometry during morphogenesis.

The OV geometry motivates a simplification of their
initial shape to a spherical shell. The ECM and iOV
form a bi-layer cap that subtends an opening angle α,
while the oOV is a mono-layer covering the rest of the
sphere (Fig. 1a). We modeled the mechanical response of
the OC as a multi-layer Kirchhoff–Love (KL) shell [20],
which assumes the 3D shell may be represented by its
2D mid-surface. Each layer of the KL shell (ECM, iOV,
and oOV) is, in contrast to recent works using shells
to study biological morphogenesis [21–23], allowed to
undergo large strains and rotations and change thick-
ness, via the plane-stress condition, during deformation
while being modeled by a compressible neo-Hookean ma-
terial model [24, 25], which takes the energy density form
Ψ0 = λ

4 (J2
m − 1− 2 log Jm) + µ

2 (Im1 − 3− 2 log Jm) with
Lamé constants λ and µ, and invariants Im1 and Jm
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of the elastic right Cauchy-Green tensor. To account
for large strains and rotations during growth, we utilize
the well-established multiplicative decomposition of de-
formation gradient F into growth Fg and elastic defor-
mation Fm parts [26–29]. Each layer of the OC is subject
to isotropic area growth via Fg = (e, e, 1) where e is the
in-plane expansion factor due to growth [20]. We simu-
late OC formation process by solving two coupled balance
equations: linear momentum balance to determine elas-
tic deformation via Fm, and mass balance to account for
growth via Fg. These equations are solved numerically
using the isogeometric analysis (IGA) method, a modern
finite element (FE)-like method that is well-suited for
shell problems due to its ability to provide an accurate
shell mid-surface description [30].

We model the differential growth during OC formation
by imposing different mass sources on the ECM, iOV, and
oOV in the manner of density-preserving growth [9], such
that the three regions have different (experimentally-
measured) growth rates [9], i.e. eECM (tn) = 1,
eiOV (tn) = 1+5tn, and eoOV (tn) = 1+1.5tn as a function
of the normalized time tn = t/τ , where τ = 20 hours is
the experimentally measured timescale for OC morpho-
genesis. The fluid-like components surrounding the OV
are neglected [31–33], based on previous studies showing
that instabilities of spherical shells are not suppressed by
the surrounding fluid environment [34].

A critical, but often neglected, feature in morpho-
genetic modeling is the effect that mass addition during
growth has on the state of stress of the growing body.
We find that (see SI for detailed derivation [20]) if the
added material during density-preserving growth is the
same as the existing material in the body, the stress Σij

generated in the growing body is amplified as:

Σij = e2 ∂Ψ0

∂εij
(1)

where Ψ0 is the neo-Hookean strain energy density, and
εij is the strain tensor. Thus, e2 acts as stress amplifica-
tion factor on the internal stress due to mass change from
growth, in which ∂Ψ0/∂εij is the standard representation
for the internal stress [35]. This stress amplification fac-
tor e2 generalizes previous works [36], as shown in the
SI.

We first show that our computational model can cap-
ture existing experimental data for OC morphogenesis
in a chick embryo [9, 10], as shown in Figs. 1b,c. The
geometric and material parameters for the chick OV fol-
lowed previous experiments [9, 10, 37], i.e. opening an-
gle α = 40◦, initial radius (R) of 50 µm, and radius
to total thickness ratio (R/h) of 5. The bi-layer cap
has ECM thickness (hECM ) of h/10 and iOV thickness
(hiOV ) of 9h/10 whose ratio is m = hECM/hiOV = 1/9,
and the mono-layer oOV has thickness (hoOV ) of h. The
shear moduli for the ECM and the iOV and oOV are 11
kPa (µECM ) and 220 Pa (µiOV and µoOV ), respectively,
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FIG. 2. (a) Simulation results varying R/h at α = 40◦, con-
sidering mass changes. Diamond means the first instability
point while triangle and square are the second instability. At
θ̄ = 2.51 (θ̄b), the shape-morphing mechanism changes from
secondary invagination (triangle) to buckling (square). (b)
Representative OC formation process: normal OC (top row)
and abnormal OC shape due to buckling (bottom row).

whose ratio is n = µECM/µiOV = 50 on the bi-layer cap.
Poisson’s ratio for all regions was set to ν = 0.45 based
on biologically observed data showing that eye tissue is
not incompressible [38, 39].

Figs. 1b,c show the simulation results of OC forma-
tion with and without accounting for the effect of mass
change during growth on the stress, where neglecting the
mass change corresponds to taking e2 → 1 in (1). By
comparing to the experimental results [9], it is clear that
our model accurately captures the evolution of thickness
change ratio of iOV center wall (λiOV ) as well as invagi-
nation depth (D) normalized by OC horizontal radius (r),
which are geometric parameters that characterize the OC
size and shape. Therefore, the stress amplification from
mass addition significantly impacts the local and inhomo-
geneous growth and enables the accurate simulation of
experimentally-observed OC growth. This also demon-
strates that there is no need to prescribe hypothetical
stiffness or growth property gradients as in previous OC
growth modeling [9, 10].

The OV thickness is known to vary with diverse bio-
logical cues, such as protein-2 alpha [40–42], which im-
plies that the radius-thickness ratio R/h of initial OC
shape also varies with different biological situations. To
account for these unknown thickness variations, we per-
formed numerical simulations at α = 40◦ with different
R/h within the biologically relevant range (5 to 20) [43–
45]. This initial geometry is characterized using a single,
dimensionless parameter θ̄ = α

√
R/h, which describes

the depth and slenderness of the bi-layer cap region rel-
ative to the angular width of boundary layer [46].

For all values of θ̄ examined, the shells exhibit two
distinct shape–shifting events (Fig. 2). At early times,
the apex of the OC inverts, resulting in formation of a
cup–like shape, which we refer to as primary invagina-
tion (Fig. 2, i→ ii, I → II). As tn increases, we observe
a second shape–shifting event that is sensitive to the ini-
tial geometry. For lower θ̄, i.e. thicker shells, we observe
a rapid deepening of the OC which preserves axisymme-
try – we refer to this as secondary invagination (Fig. 2,
ii → iii). For higher θ̄, i.e. thinner shells, we observe
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that the second shape–shifting event consists of a loss
of axisymmetry (Fig. 2, II → III). We note that for
simulations that neglect mass changes, the symmetry-
breaking event (II → III) occurred for all θ̄, which
means the normal morphogenesis process resulting in an
axisymmetric OC cannot be modeled without mass ad-
dition. See SI for OC formation movies.

To analyze, rationalize, and predict the qualitative fea-
tures underlying the different shape-morphing pathways
of OC morphogenesis, we used a shell model which ac-
counts for growth as a stimulus that changes the rest
length, i.e. natural stretch, and curvature, i.e. natural
curvature of the shell’s mid-surface. The strain energy
stored in the shell during growth is estimated based on
updated rest mid-surfaces. As a result, the natural cur-
vature in the cap acts like a torque along the intersection
between the cap and oOV to deform the OC [20]. When
these natural quantities are homogeneous over some seg-
ment of shells, they can be represented by scalar values
of Λ (stretch) and κ (curvature) whose specific values
are calculated for each segment of the OC based on the
experimentally-measured growth characteristics (see SI
for detailed derivation [20]), i.e. eECM and eiOV for the
bi-layer cap, and eoOV for the oOV. As a result, the cap
and oOV have their own scalar values of natural stretch
and curvature. The presence of Λ and κ imparts residual
stresses in the growing OC, and these quantities play a
similar role as external loads and torques do in classi-
cal mechanics, which can destabilize shells [47, 48]. This
suggests that OC morphogenesis may be governed by in-
stabilities which result from residual stress that builds up
during growth.

In the cap region, experimental observations note that
the ECM and iOV grow at different rates. This through-
thickness differential growth induces a natural curvature
that changes the apex of the OC from convex to concave.
However, the inversion of this cap is resisted by the oOV
which is a mono-layer growing homogeneously and has to
bend to accommodate the deforming cap. Open spherical
shells experiencing an evolving natural curvature may ex-
hibit a snap-through instability that everts the shell at a
critical curvature [47]. Here, the OC is not an open shell,
as the deformation of the cap will be resisted by the oOV.
However, since the oOV is resisting bending, and there-
fore resisting rotations imparted by the growth-induced
torque along the intersection, we treated the oOV as an
effective rotational spring (Fig. 3a). Therefore, by way
of a simple mechanical analogy, we model the full OC as
an open spherical shallow shell, whose geometry is the
same as the bi-layer cap, experiencing an equivalent edge
torque as shown in Fig. 3a. The natural curvature in
the cap due to differential growth, κcap, has to overcome
the bending rigidity of the effective rotational spring [20],

(a) (b) (c)

FIG. 3. (a) Equivalent natural curvature. (b) Geometri-
cal characteristics on the oOV bending-dominated boundary
layer. (c) Characteristic span of each separated cap and oOV.

resulting in an equivalent natural curvature given by

κeq ∼ κcap − Γ
∆θ√
Rh

(2)

where Γ is a dimensionless ratio of bending rigidities,

i.e. Γ = BoOV

2Bcap(1+ν) (Γ = 0.06 for the OC) with bending

rigidities Bcap and BoOV of the cap and oOV, respec-
tively, and ∆θ is angle change along the oOV boundary
layer as shown in Fig. 3b. Here, we assumed most of
the oOV deformation occurs within its boundary layer
as bending [49], and the second term on RHS of (2) de-
scribes the amount that acts to bend the oOV boundary
layer.

Open spherical shallow shells undergo snapping under
homogeneous positive natural curvature when the bound-
ary tangent vector in the colatitude direction becomes
approximately horizontal, which results in κeqR ∼ θ̄ at
the snapping [47]. Our numerical experiments here on
closed spherical shells exhibit qualitatively similar be-
havior when the primary invagination occurs via snap-
ping. That is, the primary invagination occurs when
the colatitude-direction tangent vector at the intersec-
tion between the cap and oOV becomes approximately
horizontal, which leads to ∆θ ∼ α in (2) at the primary
invagination. This results in a scaling law of the critical
natural curvature in the cap at the primary invagination
as

κcap1 R = a1(1 + Γ)θ̄ + b1 (3)

where a1 and b1 are scaling coefficients determined by our
numerical simulations, which confirms the linear scaling
with θ̄, and identifies the scaling coefficients as a1 = 1.55
and b1 = −0.95 (black solid line in Fig. 4a). As with
open shells, the primary invagination via snapping will

only occur if θ̄ > θ̄s(=
[
10/(1− ν2)

]1/4
) where θ̄s = 1.88

for the OC [20], in good agreement with prior work [47] as
the bending-dominated boundary layer covers the entire
shell for θ̄ < θ̄s.

Following this primary invagination, growth and devel-
opment of the OC continue until a second shape-shifting
event occurs, which appears to be strongly correlated to
the OC geometry. Thicker shells undergo a secondary
invagination, forming a deep cup that facilitates normal
eye development, while slender shells lose axisymmetry,
forming a shape that may hinder normal OC morpho-
genesis. First, we consider the onset of secondary invagi-
nation. The magnitude of the torque at the intersection
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between the cap and oOV continues to increase due to
the continued differential growth of the ECM and iOV.
The oOV is not rigid, and therefore the torque can ei-
ther bend the oOV or further bend the cap. Building on
the concept of a geometric composite [50], we can con-
sider the growing cap and oOV as separate structures,
and then determine how they will deform when com-
bined together. The cap, when removed from the OC,
would form a shallow shell that spans a characteristic
distance Scap (Fig. 3c – yellow). The oOV, when re-
moved from the OC, would form a deep spherical shell
of radius R′ = eoOVR, which is current radius as a re-
sult of growth. From our numerical simulations, we note
that the extent of the oOV boundary layer, where bend-
ing deformations are concentrated, is constant until the
secondary invagination occurs. We can estimate the char-
acteristic span SoOVbl of the oOV from the extent of its
boundary layer (Fig. 3c – blue), and observe that during
secondary invagination the oOV boundary layer increases
in length and curvature. Therefore, we posit that when
the span of the cap exceeds the span of the oOV bound-
ary layer, the OC will undergo secondary invagination to
account for this excess length.

The characteristic span of this oOV segment scales
as SoOVbl ∼ R′ sin(α+ θoOVbl ) where θoOVbl is angle sub-
tended by the oOV boundary layer, which scales as
θoOVbl ∼

√
h/R for spherical shells [46]. The span of

the cap scales as Scap ∼ Rα(1 + χ(1 + ν)hκcap), where
χ = (1 +m(3n− 2))/(6mn) [20]. If we suppose that the
critical point occurs when the spans are equivalent, i.e.
SoOVbl = Scap, we obtain that the critical natural curva-
ture is proportional to the shell geometry as κcapR ∝ R/h
from which the critical natural curvature in the cap at
secondary invagination can be estimated as

κcap2 R ∝ R

h
= a2

θ̄2

α2
+ b2, (4)

where a2 and b2 are obtained from simulations to be
a2 = 0.86 and b2 = 0.22. These parameters capture well
the secondary invagination via the dashed color line in
Fig. 4a. Notably, unlike the primary invagination given
by (3), the secondary invagination depends on opening
angle α.

While our model predicts the morphogenetic process
of OC formation via the experimentally-observed [9, 10]
two-step (primary and secondary) invagination, it also
indicates that very slender initial OC geometries will
undergo an elastic instability that breaks axisymmetry,
leading to abnormal OC development. This loss of the
OC axisymmetry has been observed for glaucoma in new-
born infants [19]. Secondary invagination occurs when
the oOV boundary layer is flexible enough to bend to
accommodate the excess length of the growing cap. If
the oOV is too stiff, the cap must bend instead. If we
presume that the loss of axisymmetry for slender optic
cups is due to a buckling instability, then the critical nat-
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FIG. 4. (a) Phase diagram of instabilities during OC forma-
tion for varying R/h at α = 40◦. The blue region denotes
the invaginated cup shape, and the lime and red regions are
the normal (secondary invagination) and abnormal (buckling)
OC, respectively. (b) Phase diagram for varying R/h and α.
For (a) and (b), the symbols refer to simulation results, with
diamonds symbolizing primary invagination, triangles for sec-
ondary invagination, and squares for buckling. The lines rep-
resent the scaling law of (3), (4) and (5). The black dotted
line in (b) shows the buckling transition point θ̄b of (6).

ural curvature can be analytically calculated via a linear
stability analysis, which for a circular plate with natu-
ral curvature κp and radius Rp gives κph = ±ab(h/Rp)2

with ab = χ(5 + 3ν)/(1 − ν2) at the buckling instability
(ab = 4.17 for the OC) [20]. To connect this critical nat-
ural curvature to open spherical shallow shells, we substi-
tute Rp → Rα. This gives us κeqR ∼ ab/θ̄2 + 1, which is
similar to [47]. Furthermore, the spherical shell’s geome-
try under a torque induced by natural curvature leads to
∆θ ∼

√
R/h in (2) at the buckling instability [20]. Then,

the critical natural curvature in the cap at the buckling
instability is given by

κcapb R = bb

(
ab
θ̄2

+ 1 + Γα2
θ̄2

α2

)
+ cb (5)

where α2(= π − α) is a prefactor to treat the deep oOV
shell, and bb and cb are scaling coefficients which provide
the best fit with our simulations through bb = 4.72 and
cb = −5.50 via the solid color line in Fig. 4a.

As our numerical experiments indicate that both sec-
ondary invagination and symmetry-breaking buckling
cannot occur for the same initial geometry, the inter-
section between (4) and (5) gives us the transition point
from secondary invagination to buckling as

θ̄b =

√√
4α2bbab(a2−α2bbΓ)+α4(cb−b2+bb)2+α2(cb−b2+bb)

2(a2−α2bbΓ)

(6)
where θ̄b = 2.46 is calculated at α = 40◦, in agreement
with the numerical results (θ̄b = 2.51).

Similar to the various R/h in biological situations, it
is natural to think that the opening angle will also vary
with diverse biological cues. The simulation results with
various opening angles for a wide range from 30◦ to 50◦

are plotted on a phase diagram in Fig. 4b which fully
characterizes the instability-induced shape-morphing of
the OC during its morphogenesis for a variety of initial
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geometries, showing that the proposed scaling laws work
well for all α. Above the value of θ̄b, denoted as the
dashed black line via (6), the final OC shape is abnormal
for each α.

In summary, we revealed the significant role that elas-
tic instabilities play during OC morphogenesis. Because
our model is predictive based on the initial geometry, we
hope that our study will motivate experimental efforts to
measure radius R, thickness h, and opening angle α of the
initial OV to investigate their effects on OC morphogen-
esis and to verify the accuracy of our model predictions.
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