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We show that in electron-hole bilayers with excitonic order arising from conduction and valence
bands formed by atomic orbitals that have different parities, nonzero interlayer tunneling leads
to a second order Josephson effect. This means the interlayer electrical current is related to the
phase of the excitonic order parameter as J = Jc sin 2θ instead of J = Jc sin θ, and that the
system has two degenerate ground states at θ = 0, π that can be switched by an interlayer voltage
pulse. When generalized to a three dimensional stack of alternating electron-hole planes or a two
dimensional stack of chains, AC Josephson effect implies that electric field pulses perpendicular
to the layers and chains can steer the order parameter phase between the two degenerate ground
states, making these devices ultrafast memories. The order parameter steering also applies to the
excitonic insulator candidate Ta2NiSe5.

Excitonic condensation [1–5] has been experimentally
realized in electron-hole bilayers (EHB) [6–15] where elec-
trons in one layer pair with holes in the other layer to
form excitons that condense into a single macroscopic
state. In 1976, Kulik and Shevchenko [16] (see also Refs.
[17, 18]) noted that nonzero interlayer tunneling endowes
the EHB with a Josephson effect similar to that in super-
conductors. This effect was observed in 2000 by Spielman
et al. in quantum hall bilayers [19, 20] and explained in
detail in Refs. [21–24].

If the electron and hole bands are formed by atomic
orbitals that transform differently under crystal symme-
tries, the intrinsic tunneling (hybridization) vanishes at
high symmetry points of the Brillouin zone and is very
small nearby, such that the excitonic insulator (EI) tran-
sition breaks a discrete symmetry [4, 25–29]. In this pa-
per, we show that if the orbitals lie at different spatial
locations as shown in Fig. 1, a difference of symmetries
(e.g. p and d orbitals) implies that the ordered state sus-
tains a second order Josephson effect as the tunneling has
to create or annihilate two excitons each time. A similar
effect is already well known in carefully designed super-
conducting Josephson junctions [30] (e.g., a 45◦ junction
between d-wave superconductors or a junction between
s and d-wave superconductors [31–38]). We show that it
naturally occurs in EIs, which leads to symmetry break-
ing degenerate ground states that are easily distinguish-
able and switchable. In an isolated EHB the two ground
states break parity and have opposite in-plane electrical
polarization. In three dimensional (3D) stacks of coupled
planes or two dimensional (2D) stacks of coupled chains
(Fig. 2), the two EI states break time reversal symmetry
with opposite anomalous hall conductivity [39, 40], and
potentially form topologically nontrivial states. In all
cases the excitonic order parameter may be ‘steered’ by
applied interlayer/chain electric fields via the AC Joseph-
son effect, enabling controlled switching of degenerate
ground states. This order parameter steering applies as
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FIG. 1. (a) Schematics of the electron-hole bilayer showing
electrons (−) and holes (+) and the interlayer current-phase
relation in the excitonic insulating phase. (b) False color rep-
resentation of the free energy on the plane of complex order
parameter where lower energy appears bluer. (c) Solid curve:
time dependence of order parameter phase after a voltage

pulse φa = −φ0e
−(t−t0)

2/T2
0 (dashed curve) computed from

Eq. (4) with ∆p = 14 meV, T0 = 0.3 ps, γ = 0.3∆p, D = 2
and C = 1.

well to the EI candidate Ta2NiSe5[27, 41–48].
The electron-hole bilayer shown in Fig. 1(a) consists of

two planes labelled 1 and 2 with two-component electron
creation operator ψ† = (ψ†1, ψ

†
2) from the two bands. The

Hamiltonian is

HEHB =
∑
k

ψ†k

(
ξ1(k +A1) + φ1 eidAz tk+A

e−idAz t∗k+A ξ2(k +A2) + φ2

)
ψk

+

∫
drdr′V (r − r′)ρ(r)ρ(r′) (1)

where ψk =
∫
dreikrψ(r), ρ(r) = ψ†(r)ψ(r) is the den-

sity, ξ1,2(k) is the kinetic energy describing in-plane mo-
tion with ξ1 dispersing upwards from a minimum −G/2
and ξ2 dispersing downwards from a maximum G/2 at
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the same momentum k = 0, both isotropic. (φi, Ai)
is the electromagnetic (EM) potential at layer i, A =
(A1+A2)/2 is the average in-plane component of the vec-
tor potential, Az is the average out of plane component
and we have set e = c = ~ = 1. We assume the Hamilto-
nian is invariant under time reversal T̂ and in-plane in-
version defined as P̂ : r → −r, (ψ1, ψ2)r → (ψ1, −ψ2)−r
where r = (x, y), implying ξ1,2(k) = ξ1,2(−k) and that
the intrinsic interlayer tunneling satisfies t−k = t∗k = −tk.
Thus one can write tk = i∆pfk where fk is odd under
k → −k, ∆p > 0 is real and the subscript ‘p’ denotes the
k-odd nature. We distinguish the ‘BCS’ case (G > 0)
where the two bands cross at a Fermi momentum kF with
Fermi velocity vF, and the ‘BEC’ case (G < 0) where they
don’t overlap. While all the equations and qualitative
conclusions hold for both cases, the quantitative coeffi-
cients are presented for the analytically tractable BCS
weak coupling case (∆� G), unless otherwise specified.
Without loss of generality, we set fk = cf sin kx where cf
is chosen such that |fkF | = 1.

To study the excitonic order we write the model
as a path integral and decompose the interac-
tion in the electron-hole pairing channel: Z =∫
D[ψ,∆k, A]e

∫
dτdrL0(ψ,∆k,A) where ∆k is the Hubbard-

Stratonovich field. The excitonic state appears as
a saddle point with the order parameter ∆k =∑
k′ Vk−k′〈ψ

†
2k′ψ1k′〉 where Vq is the Fourier transform of

V (r). For physically reasonable interactions, the energet-
ically favored order parameter ∆eiθ has s-wave symmetry
[49] so the k dependence may be neglected. The quasi-
particle properties are described by replacing the term
eidAz tk+A in Eq. (1) by ∆eiθ + eidAz tk+A [50]. There is
always an odd parity phonon [25, 41, 51–53] (e.g., shear
motion between the two layers) that couples linearly to
∆ but may be integrated out.

Integrating out the fermions, phonons and the order
parameter amplitude fluctuations one obtains a low en-
ergy effective Lagrangian for the order parameter phase:

L =
1

2
ν

[
− (∂tθ + φa)2 + v2

g(∇θ −Aa)2

− 1

D
∆2

p cos(2(θ −Azd))

]
(2)

where (φa, Aa) = (φ1 − φ2, A1 − A2)/2 is the layer-
antisymmetric component of the EM field [54]. The last
term arises from expanding L to second order in tk (as-
sumed small relative to ∆ or temperature), observing
that terms linear in t vanish (see Ref. [55] Sec. I). An in-
version even tk would change this term to∝ t cos θ, giving
rise to the usual Josephson effect [16, 17, 21–23]. The z-
dipole density is ρa = δL/δ(∂tθ) = −ν(∂tθ + φa) and
Eq. (2) should be supplemented by the electric field en-
ergy

∑
q φa(q)2/(2Veff(q)) representing the dipole-dipole

interactions Veff(q) = (1 − e−dq)Vq [54, 66]. At zero

temperature, the coefficients of Eq. (2) have simple ∆-
independent forms: D = 2 is the space dimension, ν is
the density of states in the normal state at the band
crossing energy and the bare phase mode velocity is
vg = vF/

√
2.

If tk is zero, Eq. (1) conserves the charge in each
plane and gives a continuous family of excitonic phases
parametrized by θ, as manifested by the U(1) symmetry
under transformation θ → θ+ θ0 of the first two terms of
Eq. (2). A non-zero tk gives rise to the third term which
reduces the U(1) invariance to P̂ , a Z2 symmetry and
implies that there are two degenerate excitonic phases
characterized by θ = 0, π (Fig. 1(b)). The excitonic order
spontaneously breaks P̂ , giving a non-vanishing in-plane
electrical polarization [26, 49] which in the BCS case is

P = P2D

[
1− tan

(
1
2ArcTan|∆p

∆ |
)]

Sgn[∆]/4. Since its

sign is opposite for θ = 0, π, measuring it by an electrical
circuit can distinguish the two ground states. In the BEC
case [67] the polarization has a more transparent phys-
ical picture. The normal state preceding the EI phase
is a semiconductor which supports excitonic modes. tk
means that these modes have oscillating in-plane electri-
cal dipoles. In the EI phase, a mode softens and freezes
as the static in-plane electrical polarization.

In spinful systems both singlet and triplet excitonic
condensates may be defined. The triplet case exhibits
spin instead of charge polarization. In the pure electronic
system the two phase are degenerate at the Hartree-Fock
level, but electron-lattice coupling favors the singlet state
[4, 25, 51] (see Ref. [55] Sec. V). We focus on the more
commonly studied singlet phase here.

Second order Josephson effect and order parameter
steering—The interplane current

−Jz = δL/δ(dAz) =
ν

D
∆2

p sin(2θ) ≡ Jc sin(2θ) (3)

is periodic under θ → θ + π in contrast to the usual
Josephson effect where it is periodic only under θ →
θ + 2π; the former is thus referred to as a second or-
der Josephson effect. Assuming a quadratic band with
effective mass 0.1me and ∆p = 10 meV, the critical cur-
rent is estimated as Jc ≈ 4 mA/µm2. To observe the
DC Josephson effect, one can source a current at one
layer and drain it on the other layer, both on the left
side of the device where the in-plane counter flow cur-
rent Ja = νv2

g∂xθ is fixed as the boundary condition
[19]. From the static limit of the Euler-Lagrange equa-
tion (charge continuity equation) implied by Eq. (2),
νv2
g∂

2
xθ = Jc sin(2θ), the phase decays to the right with

a decay length ld =
√
νv2
g/Jc ∼

√
Dvg/∆p [68]. Thus

in a long junction, only the region within a distance ld
to the contact contributes to the Josephson current [17].
The current phase relation can be verified by applying
an in-plane magnetic field to a short junction and mea-
suring the critical Josephson current as a function of the
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magnetic flux Φ through it [59]. The Fraunhofer pattern

Jc(Φ)/Jc(0) = | sin(NπΦ/(2Φ0))
NπΦ/(2Φ0) | is expected where Φ0 is

the flux quantum and the frequency N = 2 reveals the
order of the Josephson effect (see Ref. [55] Sec. IB).

To treat the order parameter steering, we focus on spa-
tially uniform dynamics which applies to a device with
gates covering the whole sample such that φa is uniform,
or a short EHB with side contacts. Eq. (2) in the gauge
A = 0 implies

1

C
∂t(∂tθ + φa) + γ∂tθ +

1

D
∆2

p sin 2θ = 0 (4)

where a C 6= 1 expresses the effect of dipole-dipole in-
teractions (charging energy) and we have added a phe-
nomenological damping γ. Thus the time derivative of
an interlayer voltage φa provides a force that pushes
the phase to increase, meaning that a suitable voltage
pulse can switch the system between ground states as
in Fig. 1(b)(c). If φa is applied by side contacts or
by gates immediately adjacent to the bilayer, the ex-
ternal electrical circuit controls φa which is already the
total voltage across the layers, and one has C = 1 in
Eq. (4). To climb the potential hill at θ = π/2 with
energy ν∆2

p/4, the threshold voltage required for a typi-

cal pulse φa = φ0e
−(t−t0)2/T 2

0 is φc ∼ T0∆2
pC/D, giving

φc ∼ 25 mV for T0 = 1 ps, ∆p = 10 meV and C = 1.
In the limit of strong drive (φa � φc), the equation of
motion becomes ∂tθ = −φa, recovering the familiar AC
Josephson effect. Note that the switching frequency scale
1/T0 is upper bounded by the gap ∆.

We have assumed that lattice distortions, if present,
can dynamically follow the order parameter. In the oppo-
site limit of slow lattice dynamics, one should fix the lat-
tice distortion. For weak electron lattice coupling (ELC),
the only change is that the Z2 symmetry remains broken
and the second minimum is at higher energy [69]. For
larger ELC the second minimum no longer exists. Thus
fast phase steering can reveal the strength of ELC.

Beyond bilayers—The second order Josephson ef-
fect generalizes to the 3D/2D systems by stacking the
electron-hole bilayers/chains as in Figs. 2(a),(b). The
stacking is along z and the conjugate wavevector is
kz ∈ (−π, π]/(2d). The model is invariant under trans-
lations by the z-direction lattice constant 2d and reflec-
tion z ↔ −z with respect to a plane containing either
the electron or holes. We specialize to short ranged
density-density interaction g such that excitonic order
∆i1/2 only links adjacent layers as in Fig. 2, and con-
sider mean field solutions where the amplitude ∆ is spa-
tially uniform but allow for the phases θ1,2 on the two
bonds to be different. We define the symmetric and
antisymmetric phase combinations θs,a = (θ1 ± θ2) /2
whose domain is θs ∈ (−π, π], θa ∈ [0, π). In the mo-

mentum basis of field operators ψ†k =
(
ψ†1k, ψ

†
2k

)
=∫

dr
∑
j e
i(k⊥r+kzj2d)

(
ψj1(r), eikzdψj2(r)

)
where k⊥ is
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FIG. 2. (a) Schematic of the 3D stack of alternating electron
(blue) and hole (unshaded) planes with pairing order param-
eters labeled. (b) Schematic of the 2D stack of alternating
electron and hole chains. The orange and blue dots represent
atomic orbitals forming the conduction and valence bands.
Their different parities lead to asymmetric inter chain hop-
ing t/− t [28]. Arrows represent the spontaneous circulating
currents. (c) The ground state band dispersion of the 2D
stack. (d) The order parameter phase dynamics (black curve)
and the Josephson current (blue curve) induced by an electric

field pulse Ez(t) = Emaxe
−(t−t0)

2/T2
0 (red curve) implied by

Eq. (9), with ∆ = 10∆p, Emax = 3.55∆p/d and T0 = 0.5/∆p.

the momentum along the planes/chains, the Lagrangian

reads L =
∑
k ψ
†
k(∂τ +Hk)ψk+ 2

g |∆|
2 with the mean field

Hamiltonian

Hk =

(
ξ1(k⊥) ∆(k)− i∆pfk cos dkz

∆(k)∗ + i∆pfk cos dkz ξ2(k⊥)

)
(5)

where the ∆p term is the intrinsic interlayer tunneling tk
and the order parameter is

∆(k) = eiθa∆ cos(dkz + θs) . (6)

Our gauge choice here is that a spatially uniform electric
field enters through k → k+A, including the ∆(k) term.

At ∆p = 0, the energy is independent of θ1 and θ2.

Nonzero ∆p reduces the symmetry to T̂ and P̂ , and the
excitonic ground state turns out to spontaneously break
T̂ instead of P̂ , corresponding to (θa, θs) = (0,±π/2),
i.e., θi1 = θi2 = ±π/2. This is verified by expanding
the Lagrangian to quadratic order in ∆p (see Ref. [55]
Sec. II). Fixing θa = 0 and in the gauge φ = 0, one finds:

L =K[θ̇s + dȦz, Ax] + cν∆2
p cos 2θs + F0 (7)

where K is the kinetic term that vanishes in the static
limit, F0(|∆|) is the ground state free energy without
interlayer tunneling, and we have neglected constant
O(∆2

p) terms. The cos 2θs term means a ‘second order
Josephson’ current jz = jc sin 2θs where jc = 2dcν∆2

p

and cν ∼ ν. In the equilibrium state, the total elec-
trical polarization is zero but there are circulating cur-
rents jinter,a = 〈

∑
k(∂ktk) sin(dkz)σ1〉 due to broken T̂ ,
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as shown in Fig. 2(b). Note that this state is linearly
stable to lattice distortions.

Around each of the two equilibrium configurations, ex-
panding Eq. (7) to quadratic order in θ ≡ θs ± π/2 and
the EM fields Ax/z, one obtains the Gaussian action for
θs fluctuations. In the low energy regime ω � ∆p and
long wavelength limit q = 0, it reads

Ss =−
∑
ω

c0(ω)
(
θ + dAz

)
−ω

(
θ + dAz

)
ω

+∫
dtdr

(
c1θ

2 + σh(θ + dAz)∂tAx/d
)

+ SA2
x

(8)

neglecting terms subleading in ∆p. The first two terms
are the kinetic and potential energies of phase fluctua-
tions where c0(ω) is the kinetic kernel that vanishes in
the static limit and c1 = 2cν∆2

p for ∆p � ∆. The third
term gives rise to an anomalous hall conductivity σh for
electric fields in the x-z plane which can also be writ-
ten into an ‘Axion’ form [70]. The last term is the bare
optical response in x direction.

The excitonic order leads to topologically nontrivial
ground states in the BCS regime (G > 0). Setting
ξ1(k) = −ξ2(k) = ξk for simplicity, the quasiparticle dis-

persion is Ek = ±
√
ξ2
k + |∆(k)|2 + ∆2

pf
2
k cos2(dkz). In

the 2D stack of electron-hole chains, the quasiparticle is
gapped with massive Dirac points at (kx, kz) = (±kF, 0)
with mass ±∆p, as shown in Fig. 2(c). The Chern num-
ber of the valence band is Sign[θs] so that the system
is a quantum anomalous Hall insulator [71] with quan-
tized Hall conductivity σh = Sign[θs]e

2/h and chiral edge
states. The kinetic kernel c0 = ν

3ω
2∆/∆p renders the

bare phase mode gap ω0 ∼ ∆p

√
∆p/∆. The 3D stack of

electron-hole layers is a Weyl semimetal [70] with Weyl
nodes at k = (0,±kF, 0) and anomalous hall conductivity
σh = Sgn[θs]

kF
π e

2/h (see Ref. [55] Sec. II, and Sec. V for
the effect of spins). Note that the BEC regime (G < 0) is
topologically trivial with σh vanishing and the minimal
gap being

√
G2 + 4∆2, although there is nonzero AC hall

response ∼ ∆p which can be measured by Kerr rotation
(neglected in Eq. (8)).

Order parameter steering by light—In all these sys-
tems, the order parameter can be steered by electric fields
perpendicular to the layers/chains, e.g., from ground
state |g〉 to P̂ |g〉 for the bilayer and to T̂ |g〉 for the 3D/2D
stacks. This can be easily verified in ‘pump-probe’ exper-
iments since the ground states have opposite in-plane po-
larization in the bilayer and opposite hall response in the
stacks. The order parameter steering follows the spirit of
AC Josephson effect: the phase θs enters the kinetic term
in Eq. (7) together with the vector potential as θs+dAz.
This term has different forms in different regimes. For
example in the 2D stacks, it behaves as K ∼ ν| ∆

∆p
|θ̇2
s

in the slow limit of θ̇s � ∆p and as K ∼ ν|∆|θsθ̇s
in the moderately fast case of ∆p � θ̇s � ∆ where

we have suppressed Az for notational simplicity. Never-
theless, upon strong electric field Ez such that the free
energy potential cos 2θs can be neglected, the equation
of motion all reduces to θ̇s = dȦz = −dEz, i.e., the
electric field provides a force to rotate the phase θs so
as to switch the system between the two ground states
θs = ±π/2 (Fig. 2(d)). The pulse that exactly delivers
such a switch is d

∫
Ez(t)dt = π. For a pulse duration of

1 ps and d = 1 nm, the field needed is Ez ∼ 2×104 V/cm.
For weaker fields such that the free energy potential mat-
ters, the dynamics depends on the time scale. In the case
of ∆p � θ̇s � ∆, the equation of motion implied by
Eq. (7) is simply

θ̇s =
∆2

p

4|∆|
sin(2θs)− dEz . (9)

The threshold field to climb over the potential barrier

and switch the ground states is about Ec ∼
∆2

p

|∆|d which

reads Ec ∼ 104 V/cm for ∆p = 10 meV, |∆| = 100 meV
and d = 1 nm.

Discussion—The bilayer could be realized by, e.g., gat-
ing suitably stacked phosphorene bilayer [72–74] or tran-
sition metal dichalcogenide bilayers [11, 12] to bring the
conduction band of one layer and valence band (different
in symmetry under C2 or C3 rotations around z, respec-
tively) of the other layer closer in energy, entering the
EI phase (see Ref. [55] Sec. ID). The 3D/2D stacks may
be either natural crystals such as monolayer WTe2 (a 2D
stack of chains) [75–77] or artificial structures. Realiza-
tions of these topological excitonic insulators [77–82] is
an important research direction.

The order parameter steering also applies to the EI
candidate Ta2NiSe5 [27, 41–45]. Its basic structural unit
is the Ta-Ni-Ta chain, with Ta-derived conduction band
states even under reflection σ⊥ : x → −x while the Ni-
derived valence band states are odd [27, 41]. The EI
state breaks σ⊥ and while the detailed electronic struc-
ture complicates the discussion of the Josephson effect,
the phase dynamics is still described by Eqs. (4) and
(9) and a photon pulse perpendicular to the chains can
still switch the system between its two ground states (see
Ref. [55] Sec. IV). This may have already been observed
[45].

Fluctuations will not destroy our qualitative conclu-
sions. Without the U(1) breaking Josephson term cos 2θ,
the exciton condensate in Eq. (2) has quasi long range or-
der at temperatures T below the Berezinskii-Kosterlitz-
Thouless temperature TBKT [83, 84]. According to renor-
malization group analysis [85], the Josephson coupling is
a relevant one at T < TBKT which renders the EI state
strictly long range ordered. However, the coupling (and
the Josephson current) is renormalized by fluctuations
to a power 1/(1− T

4TBKT
) of its bare value (see Ref. [55]

Sec. IA).
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