
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Noncollinear Ground State from a Four-Spin Chiral
Exchange in a Tetrahedral Magnet

I. A. Ado, O. Tchernyshyov, and M. Titov
Phys. Rev. Lett. 127, 127204 — Published 17 September 2021

DOI: 10.1103/PhysRevLett.127.127204

https://dx.doi.org/10.1103/PhysRevLett.127.127204


Non-collinear ground state from a four-spin chiral exchange in a tetrahedral magnet

I. A. Ado,1 O. Tchernyshyov,2 and M. Titov1

1Institute for Molecules and Materials, Radboud University,
Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

2Institute for Quantum Matter and Department of Physics and Astronomy,
Johns Hopkins University, Baltimore, MD 21218, USA

(Dated: June 4, 2021)

We propose a quartic chiral term mxmymz∇ ·m for the energy density of a cubic ferromagnet with broken
parity symmetry (point group Td). We demonstrate that this interaction causes a phase transition from a collinear
ferromagnetic state to a non-collinear magnetic cone ground state provided its strength exceeds the geometric
mean of magnetic exchange and cubic anisotropy. The corresponding non-collinear ground state may also be
additionally stabilized by an external magnetic field pointing along certain crystallographic directions. The
four-spin chiral exchange does also manifest itself in peculiar magnon spectra and favors spin waves with the
wave vector that is perpendicular to the average magnetization direction.

Chiral spin textures, such as spin-spirals and skyrmion crys-
tals, are expected to play an important role in novel informa-
tion technologies [1–6]. The appearance of non-collinear chi-
ral spin states is often understood as the result of an inter-
play between Dzyaloshinskii-Moriya interaction (DMI) and
magnetic anisotropy [7]. Indeed, the role of DMI in stabi-
lizing non-collinear magnetic order has been well established
since the first observations of helical spin-density waves in
1976 [8]. More recently, various non-collinear textures in-
cluding magnetic cones, helixes, vortices or skyrmion crystals
have been routinely observed in a variety of magnetic systems
with broken inversion symmetry (for instance, in MnSi, FeGe,
Ir/Co/Pt, or Pt/CoFeB/MgO [8–13]), where DMI is expected
to be strong.

DMI has been first proposed [14, 15] as an indirect asym-
metric Heisenberg exchange between neighboring spins. The-
oretical understanding of non-collinear magnetic order is,
however, normally achieved within Ginzburg-Landau func-
tional approach that resorts to micromagnetic energy func-
tional of a magnet. On the level of micromagnetic energy,
DMI is often defined more broadly by terms that are quadratic
in magnetization but linear with respect to magnetization gra-
dients – the so-called Lifshitz invariants (LI) [16]. From a
symmetry point of view, terms linear in gradients are only al-
lowed for systems with broken inversion symmetry.

In conducting systems, LI terms may also originate from
long-range magnetic interactions mediated by conduction
electrons with strong spin-orbit coupling (e. g. from contribu-
tions to a long range asymmetric exchange due to RKKY type
of processes [17–24]). The importance of this mechanism is
supported by the fact that long-range non-collinear order is
indeed mostly observed in conducting magnets.

In 1989 Bogdanov and Yablonskii [25] determined pos-
sible combinations of LIs in micromagnetic energy for sev-
eral important crystalline symmetry classes. These LI terms
lead to instability of collinear order. More recently, Ado et
al. showed that for three specific point groups for crystals
with broken inversion symmetry: Td, D3h and C3h all LI
terms are forbidden by symmetry. The natural question to ask

2-spin (LI) 4-spin (non-LI)

O m · (∇×m)

∑
αm

3
α(∇×m)α

m2
xL

(x)
yx +m2

yL
(y)
zx +m2

zL
(z)
xy

Td None mxmymz(∇ ·m)

TABLE I: Energy density from two-spin (LI) and four-spin (non-LI)
chiral interactions in the point group T (chiral tetrahedral symmetry)
that is a subgroup of O (chiral octahedral symmetry) and Td (full
tetrahedral symmetry). The notation L(γ)

αβ = mα∂γmβ −mβ∂γmα

denotes the Lifshitz invariant (LI).

is whether the broken inversion symmetry may still destroy
the collinear order in such crystals despite the absence of LI
terms.

In this Letter we answer this question positively for the
tetrahedral point group Td (which is the most symmetric group
out of the three). In particular, we demonstrate that a lack of
inversion symmetry in this group does lead to the appearance
of a non-LI type contribution w4S ∝ mxmymz∇ ·m in the
micromagnetic energy density, where the vector m is a unit
vector in the direction of local magnetization.

We use the term 4-spin chiral interaction for such a non-
LI type of contribution and refer to standard LI terms as 2-
spin chiral interactions. Below we demonstrate that the 4-spin
chiral interaction w4S destroys collinear magnetic order pro-
vided cubic crystal anisotropy is sufficiently weak. We also
demonstrate that 4-spin chiral interaction can be revealed in a
collinear magnetic state by asymmetry of the magnon spectra.

Our analysis remains fairly general and applies to a variety
of magnetic systems with tetrahedral point group symmetry of
magnetic atoms such as half-metal halcogenides, spinels, py-
rochlores and Heusler alloys including Cu3FeTe4, GaV4S8,
Lu2V2O7, CrxZn1-xTe, MnxZn1-xS and related materials [26–
32]. We expect the proposed 4-spin chiral interaction to be
especially strong in conducting magnets with large spin-orbit
coupling of charge carriers. We also note that the cubic mag-
netic anisotropy itself is also fourth order in magnetization and
is often very substantial. It is therefore natural to expect that
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FIG. 1: Schematic illustration of the magnetic cone state that minimize the energy of Eq. (6). The state wave-vector is perpendicular to the
average magnetization, k · n = 0, that is characteristic for the 4-spin chiral interaction w4S ∝ mxmymz∇ ·m.

the 4-spin chiral interaction may be equally important, while,
to the best of our knowledge, it has never been previously pro-
posed or analyzed.

In Table I we list the results of the symmetry analysis
of micromagnetic energy functional E[m] for a lattice with
the point group T (chiral tetrahedral symmetry). This is a
common subgroup of the point groups O and Td. One can
readily see that a two-spin chiral interaction, the bulk DMI
with the energy density wDMI ∝ m · (∇ × m), arises in
point group O but not in Td. The bulk DMI is represented
by a particular combination of Lifshitz invariants: wDMI ∝
L(x)
yz + L(y)

zx + L(z)
xy , where L(γ)

αβ = mα∂γmβ − mβ∂γmα.
The key role of wDMI on the formation of helical spin density
waves is well established [33–36]. This interaction is respon-
sible for skyrmion crystal and helical spin phases in MnSi,
MnFeSi, FeCoSi, FeGe and in many other magnetic materials
[8–11]. It has been recently suggested that 4-spin (and in gen-
eral multi-spin) chiral interactions may also play an important
role in conducting magnets if spin-orbit induced splitting of
conduction electron bands becomes comparable with s-d ex-
change energy [37].

From Table I one can also see that there exist two possible
4-spin chiral interactions in point groupO and only one in Td,
where 2-spin chiral terms are forbidden [38]. We will see that,
despite the absence of 2-spin chiral interactions, the collinear
state may become unstable also in point group Td.

Let us formulate a universal energy functional of Td ferro-
magnet, E[m] =

∫
d3r [w(r)−H ·m], where H stands for

external magnetic field measured in energy units, while the
energy density of the magnet reads,

w = A
∑
α

(∇mα)2 + 8Bmxmymz∇·m+K
∑
α

m4
α, (1)

where we collected all possible terms up to the forth order in
local magnetization.

The first term in Eq. (1) represents the usual symmetric ex-
change, A > 0, the second term corresponds to the newly
proposed 4-spin chiral interaction discussed above, and the
last term is the cubic anisotropy. Throughout the Letter we
assume that the ferromagnet is well below the Curie tempera-
ture, hence |m| = 1.

In order to see how the 4-spin chiral interaction may induce
an instability of the collinear state, we consider a generalized

conical ansatz for magnetization vector,

m(r) = n cos θ + [n1 cos (k · r) + n2 sin (k · r)] sin θ, (2)

where n1, n2 and n = n1 × n2 are mutually orthogonal
unit vectors; the wave vector reversal, k → −k, is equiva-
lent to n2 → −n2 (helicity reversal); θ = 0 corresponds to
a collinear state, while θ = π/2 corresponds to a pure helix.
Remarkably, the brute force numerical minimization of the
energy functional of Eq. (1) performed recently by the other
authors [39] does indeed correspond to magnetic cone ground
state that is described by Eq. (2).

The translation r 7→ r + ∆r is equivalent in Eq. (2) to a
rotation of the reference frame through the angle k ·∆r about
n direction, which is the direction of averaged magnetization
in the cone. Translational symmetry implies the existence of
a Goldstone mode involving the rotation of spins about n.

We further substitute Eq. (2) into Eq. (1) and average the
result over the phase k ·∆r to obtain a Landau energy density
E = E/V . The latter becomes a function of the parameters k,
n and θ of the conical state (2)

E =Ak2 sin2θ −B k · v(n) sin2θ (1− 5 cos2θ)

+K [u1(θ) + u2(θ)c(n)]− n ·H cos θ, (3)

where we introduced

v(n) =(nx(n2y − n2z), ny(n2z − n2x), nz(n
2
x − n2y)), (4a)

c(n) =3(n2yn
2
z + n2zn

2
x + n2xn

2
y), (4b)

u1(θ) = cos4θ + (3/4) sin4θ, (4c)

u2(θ) =2 cos2θ sin2θ − (2/3) cos4θ − (1/4) sin4θ. (4d)

Note that the transverse polarization condition of the conical
spiral n · v(n) = 0 follows directly from Eq. (4a).

The four-spin interaction sets the energy scale B2/A that
defines the non-collinear order. After convenient rescaling

k = Bk̃/A, H = B2H̃/A, K = B2K̃/A, (5)

the energy density of Eq. (3) takes the form

E =
B2

A

[
(k̃− k̃0)2 sin2θ + u(n, θ)− n · H̃ cos θ

]
, (6)

where k̃0 = v(n) (1 − 5 cos2 θ)/2 is a characteristic wave-
vector and u(n, θ) = K̃ [u1(θ) + u2(θ)c(n)] − k̃20 sin2θ is
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FIG. 2: The color plot is obtained by numerical minimization of the function E(k,n, θ) of Eq. (6) and represents the value of sin θ (the span
of magnetic cone) at the global minimum, provided external magnetic field is directed as H̃ = H̃(0, 1, 1)/

√
2. Non-collinear magnetic cone

state (finite θ and k) is realized for moderate values of K̃ and H̃ . The upper left panel shows the horizontal crosssection with H̃ = 0, while
the lower left panel shows three vertical crosssections for K̃ = 0.03, 0.3, and 0.51. The angle θ smoothly deviates from zero across the
lines K̃ = 2 − |H̃|, which correspond to the second order phase transition. Noisy borders for K̃ ≈ ±0.5 correspond to the first order phase
transition from collinear to a non-collinear state with a finite θ. The corresponding jumps are also seen in the left panels.

an effective potential. Thus, the vector v (if non vanishing)
defines the propagation direction of the conical spiral, while
the angle θ (if it deviates from θ = 0) defines the opening
angle of the cone.

The energy density (6) has an absolute minimum at k =
k0 = Bk̃0/A. The wavevector k0 is always perpendicular to
n since v·n = 0. For the non-collinear phase (i. e. for finite k0
and θ at the minimum), the resulting conical magnetic order
is illustrated schematically in Fig. 1. This is in contrast to the
bulk DMI ∝ m · (∇ ×m) that stabilizes conical or helical
states with k0 parallel to n.

The result of numerical energy minimization in Eq. (6) is
illustrated in Fig. 2 by plotting the dependence of sin θ on both
K̃ and H̃ at the absolute energy minimum. One can see from
the minimization procedure that the opening angle θ may, at
best, only slightly exceed the value π/6, while the pure helix,
θ = π/2, is never reached.

For zero field and small anisotropy, −0.28 < K̃ < 0.44,
we find a non-collinear conical state with k = k0 and θ ≈
π/6. The minimum is reached for n = (0, 1, 1)/

√
2, v =

(0, 1,−1)/2
√

2, and for the other 11 equivalent directions of
n that are related by the rotation symmetries of the Td point
group (see Table ?? of the Supplemental material [40]).

In the limit of large anisotropy, the ground state is collinear.
For example, for zero field one finds the minimal energy den-
sity, E = K/3 for K̃ > 0.44 with the magnetization along
a body diagonal such as n = (1, 1, 1)/

√
3, and E = K for

K̃ < −0.28 with the magnetization along n = (0, 0, 1) and
symmetry equivalents. An external magnetic field applied in
〈011〉 (or any equivalent) direction can additionally stabilize

the non-collinear state as can be indeed seen in Fig. 2. For
example, increasing magnetic field in 〈011〉 direction for a
system with K̃ = 0.51 induces the first order phase transition
to a non-collinear phase as it is illustrated in the right bottom
panel in Fig. 2.

Generally, the angle θ deviates smoothly from zero across
the lines K̃ = 2− |H̃| indicating a second order phase transi-
tion. The noisy borders of the color plot in Fig. 2 correspond
to the first order transition that is characterized by the compe-
tition of minima at finite θ and θ = 0 (see also the left panels).

Let us now investigate how the four-spin chiral interac-
tion may affect the magnon spectra. To that end we linearize
Landau-Lifshitz equation ∂m/∂t = Heff×m with respect to
a small variation δm. We consider a collinear phase, where
the unit vector n yields the equation (H − 4Kno3) × n = 0
with no3 = (n3x, n

3
y, n

3
z). Instead of solving the resulting

cubic equation we introduce the Lagrange multiplier λ =
λ(H,K) that is set by the algebraic equation

Heff = H− 4Kno3 − λn = 0, (7)

alongside with two independent components of the vector n.
Using the ansatz m = n + δm exp(iωqt − iq · r) with

n · δm = 0, we, then, obtain the magnon dispersion [40]

ωq =
√

(Ωq + 4cK)2 + 16K2(d2 − c2)− 8B v · q, (8)

where Ωq = 2Aq2 + λ, v and c are defined in Eqs. (4a) and
(4b), correspondingly, and d = 3

√
3nxnynz .

For H � |K|, one finds n = H/H , hence λ = H and
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FIG. 3: Absolute value of the vector v that defines the asymmetry
of the magnon dispersion δωq = −16Bv · q as the function of the
magnetization direction n = (cosα sinβ, sinα sinβ, cosβ).

Eq. (8) is reduced to

ωq|H�K = 2A (q− q0)2 +H − 8B2v2/A, (9)

where q0 = (2B/A)v.
The wave-vector q0 defines the effect of the four-spin chiral

interaction on magnon spectra. For θ = 0 one formally finds
q0 = −k0, even though the wave vector k0 of the spiral is
irrelevant in the collinear phase.

Thus, the coefficient B can be quantified by measuring the
difference δωq = ωq−ω−q = −16Bv ·q for the wave-vector
q that is orthogonal to the magnetization direction n, provided
the vector v is finite. This clarifies the meaning of the vector
v in collinear phase as the vector that defines the asymmetry
of magnon dispersion.

The largest value of δωq is observed for magnon wave vec-
tors q that are parallel to v, and, consequently, perpendicular
to n. This is again in sharp contrast to the effect of the bulk
DMI for which q0 ∝ n.

To maximize the effect of the four-spin term one needs to
drive the length of the vector v to its maximal value v = 1/2.
This can be achieved again by applying an external field in
the direction 〈011〉 or in any other equivalent crystallographic
direction. In this case, one finds a particularly simple result
δωq ∝ qy − qz for any K > 0.

The absolute value of the vector v is illustrated in Fig. 3 for
different magnetizaition directions n.

It is worth noting that the coefficient B does not enter the
magnon dispersion in the absence of external field. Indeed,
for H = 0, the ground state magnetization n is set by the
sign of the anisotropy constant only. For K > 0 one finds
n = (1, 1, 1)/

√
3, which corresponds to λ = −4K/3, v = 0,

c = d = 1. Therefore, the magnon dispersion reads ωq =
2Aq2+8K/3. ForK < 0 one finds n = (0, 0, 1), λ = −4K,
v = 0, c = d = 0, hence ωq = 2Aq2 + 4|K|.

Thus, the new 4-spin chiral interaction term in cubic crys-
tals with broken inversion symmetry does indeed lead to non-
reciprocal magnon dispersion. Similarly to the bulk DMI, it

breaks the symmetry with respect to the wave vector reversal
q → −q, but in a direction of q that is orthogonal to magne-
tization. The bulk DMI leads to q → −q non-reciprocity in
the direction parallel to magnetization.

It is evident from Eqs. (8,9) that the four spin chiral inter-
action shifts the minimum of magnon energy q ∝ q0. More-
over, the results suggest that the frequency ωq becomes neg-
ative at least for H ' 2B2/A, provided anisotropy is suf-
ficiently weak, |K| . B2/A. Such negative values of ωq

are unphysical and indicate an instability of the collinear or-
der. Low-energy magnons in the presence of non-collinear
periodic ground state form a banded spectrum that we do not
analyze in this Letter.

So far we have discussed the 4-spin chiral interaction in
the continuum theory limit. One possible Heisenberg equiv-
alent of this interaction can be constructed on a pyrochlore
lattice. Let us consider the four vertices of a regular tetrahe-
dron with coordinates r0 = (0, 0, 0), r1 = (0,−a/4,−a/4),
r2 = (−a/4, 0,−a/4), and r3 = (−a/4,−a/4, 0), where a
is the cubic lattice constant of the pyrochlore lattice. We fur-
ther define the four unit vectors pointing from the center of
the tetrahedron to the respective sites:

n0 = (+1,+1,+1)/
√

3, n1 = (+1,−1,−1)/
√

3,

n2 = (−1,+1,−1)/
√

3, n3 = (−1,−1,+1)/
√

3, (10)

which satisfy ni · nj = (4δij − 1)/3.
With these notations, the four-spin chiral exchange interac-

tion is given by the following energy:

U4 = (n0 · S0)(ex · S1)(ey · S2)(ez · S3)

+ (ex · S0)(n1 · S1)(−ez · S2)(−ey · S3)

+ (ey · S0)(−ez · S1)(n2 · S2)(−ex · S3)

+ (ez · S0)(−ey · S1)(−ex · S2)(n3 · S3), (11)

where eα stand for the unit vectors in the chosen coordinate
frame, α = x, y, z, while Si stand for spins on respective
lattice cites. The gradient expansion of U4 to the lowest order,

Si(ri) = S [m(0) + (ri · ∇)m(r)|r=0 + . . .] , (12)

and subsequent integration by parts yields the chiral 4-spin
term with B = −a/8S4.

In conclusion, we suggest the existence of a four-spin chiral
magnetic interaction that may be responsible for the appear-
ance of non-collinear magnetic order in ferromagnets with the
Td point-group symmetry. Even though, the DMI interaction
between pairs of spins is possible in Td magnets it does not
lead to linear in gradient terms in micromagnetic energy [28–
31]. We demonstrate that, in this case, four-spin chiral in-
teractions become more important. Similar situation arises in
crystals with D3h and C3h point group symmetries that are
rather common among two dimensional magnets. Thus, tak-
ing into account possible four-spin chiral exchange interac-
tions is important for understanding non-collinear magnetic
order in these systems.
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