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Abstract:  

Using Indium √𝟕  √𝟑  on Si(111) as an atomically thin superconductor platform, and by 

systematically controlling the density of nano-hole defects (nanometer size voids), we reveal 

the impacts of defects density and defects geometric arrangements on superconductivity at 

macroscopic and microscopic length scales.  When nano-hole defects are uniformly dispersed 

in the atomic layer, the superfluid density monotonically decreases as a function of defect 

density (from 0.7% to 5% of the surface area) with minor change in the transition 

temperature Tc, measured both microscopically and macroscopically. With a slight increase 

in the defect density from 5% to 6%, these point defects are organized into defect chains that 

enclose individual two-dimensional patches. This new geometric arrangement of defects 

dramatically impacts the superconductivity, leading to the total disappearance of 

macroscopic superfluid density and the collapse of the microscopic superconducting gap. 

This study sheds new light on the understanding of how local defects and their geometric 

arrangement impact superconductivity in the two-dimensional limit.  

 

Superconducting ground states are known to be robust against non-magnetic disorder [1], in the 

weakly disordered 3D bulk case. However, in a highly disordered regime, both the transition 
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temperature Tc and the superfluid density (SFD) can be significantly suppressed by disorder 

induced vortex pinning and scattering centers [2-6]. A conventional superconductor (SC) in the 

two-dimensional (2D) limit has a low TC and low SFD, resulting in fragile superconductivity [7-

9].  Previous investigations using highly disordered amorphous and granular films have also shown 

a rapid suppression of both TC and the SFD with thickness reduction, eventually resulting in a 

superconductor-insulator transition [3,10-17]. The emergence of single crystal films, however, 

reveals surprises: at a thickness of only few monolayers, Pb films still show remarkably high 

superfluid rigidity with robust superconductivity [18-21], indicating the need for a close 

examination of how superfluid rigidity disappears in single crystal superconducting films in the 

2D limit. Intuitively, in the single atomic layer limit, one anticipates that local defects would have 

a profound impact on superconductivity [1]. But exactly “how” such defects manifest at different 

length scales in 2D superconductivity remains an unexplored territory. With the rapid discovery 

of different atomically thin single crystal superconductors [20,22,23], addressing how the defect 

formation at a microscopic level influences the superconductivity in the 2D limit becomes ever 

critical and timely.   

 

Using Indium √7  √3  on Si(111) as an atomically thin superconductor platform (Fig. 1a) [24-

28], we control the formation of one specific type of defects, nanometer-size hole defects, in terms 

of density and their geometric arrangements, and investigate the superconductivity from 

microscopic to macroscopic length scales. Microscopically, we probe the local superconducting 

gap using scanning tunneling microscopy/spectroscopy (STM/STS) (Fig. 1b) and macroscopically, 

we probe the SFD using a double coil mutual inductance measurement (Fig. 1c) [2,29-31]. Most 

significantly, we found that these nano-hole defects have a profound impact on the 
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superconductivity at different length scales.  When these nano-hole defects are uniformly dispersed 

in the 2D film, we found that the SFD decreases monotonically as increasing of defect density 

while 𝑇𝑐, measured both microscopically and macroscopically, remains relatively robust. However, 

at higher defect concentrations, when these point defects are organized into defect chains that 

separate the 2D surface into regions of enclosed 2D patches, both the SFD and quasi-particle gap 

vanish, down to the lowest temperature of our measurements (~ 2.3 K).    

The double-coil measures the temperature dependent complex sheet conductivity   Y(𝑇) =

[𝜎1(T) + 𝑖𝜎2(𝑇)]𝑑, where 𝑑  is the sample thickness, in our case determined using STM (see 

supplementary), and  𝜎1 + 𝑖𝜎2 is the usual complex conductivity [2,18,29-33]. The real part 𝜎1 

reflects the dissipative process caused by vortex motion, and the imaginary part 𝜎2 is related to the 

SFD 𝑛𝑠 , through 𝜎2 =
𝑛𝑠𝑒2

𝑚𝜔
 [8]. It is customary to refer to 

1

𝜆2 = 
𝜇0𝑛𝑠𝑒2

𝑚
 as the SFD (as they are 

proportional), and we adopt this convention. This set-up also allows us to directly measure the 

superfluid phase rigidity 𝐽𝑠, through  𝐽𝑠 =
ℏ2𝑑

4𝑒2𝜇0𝑘𝐵𝜆2. A detailed description of the double-coil set-

up and SFD calculation can be found in supplementary. As both the STM/STS and double coil 

probes are in situ and non-contact, the sample crystallinity is maintained and undesirable effects 

from electrical contact fabrication are avoided in in situ transport measurements [24,25,28,34]. By 

applying these two techniques on the same sample, a direct comparison between microscopic and 

macroscopic SC behavior can be made. 

 

Starting from a pristine single crystal Indium √7 × √3 layer on Si(111), we introduce defects as 

an independent control parameter (see supplementary). Fig. 2a to 2d show the topography of 

sample #1 to sample #4 with increasing defects density. The inset atomic images show that all four 
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samples are in the √7 × √3 phase. The percentage of the hole defects refers to the surface area 

fraction occupied by the voids.  In addition, the area fraction of extra islands is also labeled. Fig. 

2e and 2f show typical zoomed-in images of hole and island defects, both of which are in 

nanometer scales and cause imperfection on a continuous film. Fig. 2g shows the temperature 

dependent superfluid density 1/𝜆(𝑇)2,  for sample #1 to sample #4 and Fig. 2h shows the 

corresponding real part 𝜎1 evolution. Using the two-fluid model fitting, 
1

𝜆2
(𝑇) =

1

𝜆2
(0 𝐾)(1 −

𝑇

𝑇𝑐
)4, on sample #1 (Fig. 2g), the zero-temperature SFD can be estimated:  

1

𝜆2
(0 𝐾) =

3.4 𝜇𝑚−2. From the temperature dependent SFD one can calculate the phase rigidity,  𝐽𝑠 (T). 

Following Emery and Kivelson [9], we evaluate the ratio between the characteristic phase-ordering 

temperature (0.9 × 𝐽𝑠(0 𝐾) for a 2D system) and the superconductivity transition temperature, as 

it parameterizes the strength and importance of phase fluctuations in the superconductivity 

transition. The ratio is roughly two for sample #1, indicating a regime where the phase fluctuations 

play an important role, even for a nearly perfect crystalline film.  Note this ratio is markedly 

different from an earlier study of few-monolayer Pb films whose superfluid rigidity is more than 

an order of magnitude higher [18], and for bulk Pb, this ratio is more than two orders of magnitude 

[9]. 

  

The temperature dependent SFD in the extreme 2D limit can be described by the BKT theory 

adapted to the SC scenario [35-38], which is that the universal BKT line with a slope of 
8𝜋𝜇0𝑘𝐵

𝑑𝛷0
2  

intersects 1/𝜆(𝑇)2  at the BKT transition temperature, i.e., 𝑇𝐵𝐾𝑇 =
𝜋

2
𝐽𝑠 . At this temperature 

thermally excited vortices start to proliferate and destroy the quasi-long-range order. A standard 

BKT theory would predict a sudden jump in the SFD from zero to a finite value at 𝑇𝐵𝐾𝑇 [35,37,38].  
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However, such a sudden jump in the SFD is absent here; instead, the change is gradual, varying 

across a finite temperature range, suggesting that the behavior here does not follow the traditional 

BKT theory [39]. Due to this smooth transition, a finite SFD can still be detected above 𝑇𝐵𝐾𝑇. We 

define the critical temperature, the onset temperature of detectable SFD as 𝑇𝐶,𝑆𝐹𝐷 . For example, 

𝑇𝐶,𝑆𝐹𝐷 = 3.3 ± 0.05 𝐾 for sample #1, which is almost the same value as the bulk indium case, 3.4 

K. This defined 𝑇𝐶,𝑆𝐹𝐷  is consistent with the onset temperature of vortex proliferation, which can 

be seen in the corresponding 𝜎1(𝑇) behavior and is shown later to be consistent with the STS 

measured transition temperature. 

 

Sample #2 shows similarly low hole density, albeit with a slightly higher island density, compared 

with sample #1. The SFD result shows a comparable value, although 𝑇𝐶,𝑆𝐹𝐷  occurs at a slightly 

lower temperature, 2.95 ± 0.05 𝐾, suggesting that an increase of scattering due to the increased 

island defects can suppress the  𝑇𝐶 slightly but without impacting the SFD. From the two-fluid 

model fitting, the fitted zero-temperature SFD is 4.2 𝜇𝑚−2 [40], further testifying that this system 

is in the strong phase fluctuation limit. Interestingly, the dissipation component, 𝜎1(𝑇) in sample 

#1 shows a broader width than that in sample #2 despite having a slightly higher TC; this might be 

related to a slightly larger width of grooves at the step edges in sample #1 which increases the 

phase fluctuations [41]. A dramatic change occurs in sample #3 when the hole density reaches 5%.  

Even though 95% of the surface retains its pristine single crystallinity, as shown by the atomic 

image, the SFD drops by almost one order of magnitude, signaling an enhancement of phase 

fluctuations. However, the onset SFD temperature 𝑇𝐶,𝑆𝐹𝐷, is reduced only by 2% and 12%, 

compared with sample #2 and #1 respectively. This shows that the local hole defects disturb the 

phase coherence and thus strongly suppress the global phase rigidity but has little effect on 𝑇𝐶,𝑆𝐹𝐷 . 
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More interestingly, upon a further increase of hole density to 6% (Fig. 2d), we found that the 

geometric arrangement of defects changes from a uniform distribution to defect chains forming 

closed loops, which break the continuous film into isolated patches. Although the crystallinity of 

the atomic structure is still preserved in the flat areas, we can no longer detect SFD down to the 

lowest instrumentation temperature. This systematic study indicates that both defect density and 

connectivity profoundly impact the phase rigidity in atomic layer superconductors—a point to be 

elaborated further below.  

 

We next discuss the local superconducting gap. STS was used to probe the temperature dependent 

superconducting gap, ∆(𝑇), using both a normal tip and a superconducting tip; the latter provides 

higher energy resolution with better accuracy of gap value determination (See Fig. S3). Here, we 

present detailed results for sample #2 (Fig. 2b and 3a) and sample #3 (Fig. 2c and 3b), where the 

transition from high to low superfluid phase rigidity occurs. Fig. 3c and 3d show the spectra 

acquired on sample #2 and #3 using a niobium (Nb) tip and a lead (Pb)-coated tungsten (W) tip 

respectively, which exhibit SC-SC tunneling features [8], with four peaks at ±|∆1 + ∆2| and 

±|∆1 − ∆2| , where ∆1  and ∆2  refer to the superconducting gaps for tip and sample. A more 

accurate determination of ∆2 is based on fitting an SC-SC tunneling formula, and Fig. 3e inset 

shows one example (see supplementary Fig. S3b for detailed analysis). The BCS fitting of the 

temperature dependent gap value ∆(T)  (Fig. 3e and 3f) allows us to obtain the transition 

temperature for sample #2, 𝑇𝐶,𝐵𝐶𝑆_𝑠𝑎𝑚𝑝𝑙𝑒 #2 = 3.1 ± 0.1 𝐾 , and for sample #3, 𝑇𝐶,𝐵𝐶𝑆_𝑠𝑎𝑚𝑝𝑙𝑒 #3 =

2.9 ± 0.2 𝐾 [42].  
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Fig. 3g summarize the experimental determination of microscopic 𝑇𝐶,𝐵𝐶𝑆  (defined by the 

detectable energy gap) and macroscopic 𝑇𝐶,𝑆𝐹𝐷 (defined by the detectable SFD) as well as the SFD 

at 2.3 K for samples of different hole densities. Within the experimental error, we find that the 

values of 𝑇𝐶,𝐵𝐶𝑆 are consistent with the values of 𝑇𝐶,𝑆𝐹𝐷. In addition, in sample #4 where an SFD 

is not detectable down to 2.3 K, the SC gap is not observed down to 2.3 K either (see supplementary 

Fig. S4).  These results indicate that a macroscopic detectable SFD goes hand-in-hand with a 

microscopic detectable SC gap. This observation is consistent with that in a 3D conventional 

superconductor [43], but directly contrasts with highly disordered 2D SC films, where the SC order 

parameter is spatially non-uniform [14,44]. We think the difference is related to the single-crystal 

nature of this system, where most of the film is well crystallized and connected, which leads to a 

uniform pairing potential and a coherent SC transition across the sample. In addition, the 

significant impact of hole defect density on the SFD is shown in Fig. 3h. 

We next discuss whether defects result in an inhomogeneity in the local tunneling gap. Fig. 4b and 

4d present the STS mappings across several atomic steps on sample #2 and several defects on 

sample #3 respectively. Since ∆1 is the tip SC gap, the spatial uniformity of the sample SC gap ∆2, 

is reflected in the uniformity of ±|∆1 + ∆2| peak energies. As sample #2 contains primarily 

pristine regions, it might not be surprising that the gap uniformity is maintained even across the 

step edges [41,45].  Most surprisingly, this gap uniformity is maintained on sample #3, which 

contains 5% hole defects. Outside the gap energy range, the tunneling spectra exhibit a higher 

noise level at the defect locations.  This is further exemplified by the STS spectra (Fig. 4f) acquired 

at a lower temperature and at three different representative positions (marked on Fig. 4e):  the 

pristine area, the step edge defect, and the hole defect. All three spectra show the typical 

superconductor to superconductor tunneling features with the same ±|∆1 + ∆2| peak energies, 
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indicating uniform gap values among these three points. Nevertheless, features near ±|∆1 − ∆2| 

in the defect regions appear to be more smeared out in the defect, suggesting a weakening of order 

parameter coherence in the defect region without changing the gap size. As for the increased noise 

level outside the gap energy range, we attribute it to the enhanced local potential fluctuations due 

to the charging and de-charging process during tunneling [46]. Note that the uniformity of the SC 

gap is also maintained at 2.9 K, where we observed a vanishing of SC behavior both locally and 

globally. The reason why the same gap value is measured in the defect region may be closely 

related to a much longer coherence length, ~ 600 nm for a crystalline film [25,47], which is about 

two orders of magnitude larger than the defect size. This prevents local defects from disrupting the 

SC order parameter, although the defects can contribute to the reduction of SFD and the 

enhancement of phase fluctuations.  On the other hand, the SC proximity effect from the 

surrounding continuous film may also play a role in retaining the SC gap value at the hole defects 

especially with the circular geometry of the hole defects, which is known to enhance the proximity 

effect due to an enhanced Andreev reflection [48].   

 

This joint microscopic/macroscopic investigation provides us with a new insight into the role of 

nano-hole defects on atomically thin 2D superconductors. We show that provided single 

crystallinity can be maintained over an extended region with very few defects, the Tc can remain 

relatively high (close to the bulk value) both at microscopic and macroscopic length scales.  Nano-

hole defects, when uniformly dispersed, can reduce the superfluid density accordingly but with 

minor change in the Tc value based on the observable SFD at the macroscopic scale and 

superconducting gap at the microscopic scale. Most intriguingly, when defects form chain 

structures that break the surfaces into 2D patches with a lateral dimension of 100-200 nm, the 
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superconducting gap and SFD vanish together.  We believe this is due to the difficulty in forming 

a superconducting coherent state in the local region even though pristine single crystallinity is 

maintained (although the SC state may exist at a much lower temperature).  Our work illustrates 

the profound impacts of nano-hole defects on atomically thin 2D superconductors: both the density 

and the geometric arrangement of defects disrupt the formation of superconducting states. The 

overall picture presented here should be relevant to other types of condensates—such as exciton, 

magnon, and polariton condensates—in the extreme 2D limit. 

 

 

Acknowledgements 

We are grateful to Allan H. MacDonald, Ming Xie and Takashi Uchihashi for helpful discussions. 

This work was primarily supported by the National Science Foundation through the Center for 

Dynamics and Control of Materials: an NSF MRSEC under Cooperative Agreement No. DMR-

1720595.  Other support was from NSF Grant Nos. DMR-1808751, DMR-1949701, DMR-

2114825, and the Welch Foundation F-1672. 

 

 

 

 

 

 

 



 10 

Figures 

   

Fig. 1| Schematic illustration of methodology. a, Indium adatoms on Si(111) and reconstruct 

into √7  √3 phase.  b, Microscopic probe of scanning tunneling microscope. Both the probe apex 

and the tunneling region are in nm scale. c, Macroscopic probe of double-coil mutual inductance 

system. Both the probe coil size and the sample size are in mm scale.  

 

 

  

Fig. 2| Temperature-dependent superfluid density. a-d, Topography of indium 7   3 

monolayer samples with varying defect densities. The top right insets show their corresponding 

atomic images where the scale bar is 1 nm. e-f, Topographic image of hole and island defects. g, 

Temperature-dependent superfluid density for sample #1 to #4. The two-fluid model fitting is used 

Sample #2

b

50nm

Sample #1

a

50nm

Hole defects: 0.7%
Total defects: 1.8%

Sample #3

c

100nm

Hole defects: 5.1%
Total defects: 5.7%

d

Sample #4
100nm

Hole defects: 6.3%
Total defects: 8.5%

e

Hole defect

f

Island defect

h

! ! " #

Hole defects: 0.7%
Total defects: 4.3%

5nm

g

! $ %&

5 nm1nm

Figure #2

!
!

(a
rb

. u
n

it
s)



 11 

for sample #1 and #2 to extrapolate the SFD at 0 K. The blue dashed line is the universal BKT 

line. h, The temperature-dependent 𝜎1 for sample #1 to #4. 

 

 

 

Fig. 3| Temperature dependent quasi-particle excitation spectrum. a, b, STM image taken on 

sample #2 and #3. c, d, Temperature dependent tunneling spectra on the pristine area of sample #2 

and #3 using superconducting Nb and Pb tips, respectively. Spectra acquisition positions for 2.3 

K are marked on Fig. a and b with the corresponding color. Spectra at other temperatures are also 

taken at a similar area, more than 10 nm away from the hole defects. Curves are offset for clarity. 

The black dashed line is a guide to show the temperature dependent |∆1 − ∆2| tunneling peak 

position. e, f, BCS gap fitting for sample #2 and #3 respectively. The inset in e shows a typical 

tunneling spectrum using superconducting Nb tip at 2.58 K. g, A summary of critical 

temperatures 𝑇𝐶,𝑆𝐹𝐷 and 𝑇𝐶,𝐵𝐶𝑆 as a function of hole defect density. Data points for sample #1 and 

#2 are laterally offset to avoid overlapping, both are at 0.7% hole defect concentrations. h, A 

summary of SFD at 2.3 K for samples of different hole defect density. Horizontal error bars 

represent statistical standard deviations of hole defect density.  

Fig. 3
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Fig. 4| Uniformity of superconducting gap distribution. a, c, STM image taken on sample #2 

and #3. b, d, The spatial dependence of superconducting gap spectra along the white dashed arrow 

in a and c respectively. The position independent ±|∆1 + ∆2| (bright yellow) peak energies show 

that the gap is spatially uniform. e, Topography on sample #3 showing step edge defects and hole 

defects. f, Spectra taken on position Ι to ΙΙΙ as labeled in e. Inside the window marked by the red 

dashed line, duplicate curves which are amplified by a factor of 7 are also plotted to better show 
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the tunneling peak feature at ±|∆1 − ∆2|. Curves are offset for clarity and the horizontal black bars 

mark the zero for each curve. 
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