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We use a neural network ansatz originally designed for the variational optimization of quantum
systems to study dynamical large deviations in classical ones. We use recurrent neural networks
to describe the large deviations of the dynamical activity of model glasses, kinetically constrained
models in two dimensions. We present the first finite size-scaling analysis of the large-deviation
functions of the two-dimensional Fredrickson-Andersen model, and explore the spatial structure of
the high-activity sector of the South-or-East model. These results provide a new route to the study
of dynamical large-deviation functions, and highlight the broad applicability of the neural-network
state ansatz across domains in physics.

Introduction— Dynamical systems, which include
glassy [1–3], driven [4–8], and biochemical systems [9, 10],
are defined by ensembles of stochastic trajectories, much
as equilibrium systems are defined by ensembles of
configurations. Trajectories can be characterized by
time-extensive trajectory observables, such as dynami-
cal activity [1, 2, 11], entropy production [12, 13], or
other currents [14–16]. Fluctuations of these observ-
ables are often described by large-deviation functions—
the scaled cumulant-generating function (SCGF) and the
rate function—which play a role analogous to thermody-
namic potentials for equilibrium systems [17, 18]. Cal-
culating large-deviation functions is a challenging task,
requiring the use of advanced methods based on e.g.
cloning [19–21], or the use of guiding or auxiliary dynam-
ics [22–24]. Recently, neural networks have been used to
construct such auxiliary dynamics [25–27].

Here we demonstrate the ability of the neural-
network state ansatz [28] to calculate the large-deviation
functions of dynamical systems in both one and two di-
mensions. We use this ansatz to represent the long-time
configurational probability distributions associated with
rare trajectories, inspired by its recent success within the
variational optimization of quantum systems [28]. The
similarities between variational energy minimization in
quantum systems and finding the SCGF as the largest
eigenvalue of a tilted generator have inspired using
variational techniques for studying large deviations in
dynamical systems, in particular tensor network meth-
ods [29–33]. However, current variational approaches
to calculating large-deviation functions are usually
limited to one-dimensional systems, while the flexibility
of the neural-network ansatz allows for straightfor-
ward generalization to higher spatial dimensions. We
calculate the large-deviation functions for dynamical
activity in prototypical models of slow dynamics, the
Fredrickson-Andersen (FA) [34] and South-or-East
models, in one and two dimensions, and present the first

size-scaling analysis of the large-deviation functions for
dynamical activity in two dimensions. We also explore
and resolve the spatial structure of the high-activity
sector of the South-or-East model. Although we focus on
kinetically constrained models, our method for obtaining
large-deviation functions is widely applicable. The ease
of extension of this approach to two dimensions opens
new avenues for the efficient study of dynamical large
deviations, and demonstrates the broad applicability of
the neural-network state ansatz to classical dynamical
problems.

Model and observables— Kinetically constrained mod-
els discussed in this work consist of a lattice of N binary
spins i = 1, . . . , N , which take values ni = 1 (up) or
ni = 0 (down). Spin i flips up (resp. down) with rate
fic (resp. fi(1 − c)), where c is a parameter (equal to
the density of up-spins in equilibrium) and fi is a model-
dependent kinetic constraint that renders the dynamics
of the model slow or glassy [34–37]. For the FA model,
fi =

∑
j∈nn(i) nj is the number of nearest-neighbor up-

spins. The East (1D) and South-or-East (2D) models
have a directed kinetic constraint, with fi equal to ni−1,
or to the number of nearest-neighbor up-spins to the left
and above spin i, respectively. Their dynamics are de-
scribed by the generator

W =
∑
i

fi [c(σ+
i + ni − 1) + (1− c)(σ−i − ni)], (1)

where σ±i flips site i up or down. We work with open
boundary conditions by connecting each spin on the
boundary of the lattice to an immobile site in the down
state.

We will study the large deviation properties of the
(intensive) dynamical activity k = K/t of the FA and
South-or-East models in two dimensions. The activity
of trajectory ω of length t is equal to K(ω), the num-
ber of configuration changes within the trajectory. The
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FIG. 1. (a) For a two-dimensional system, an RNN cell with
learnable parametersW calculates a new hidden state h, given
the hidden and visible states of previous lattice sites α and β,
and passes this state to other lattice sites. The hidden state
is further processed to calculate the normalized conditional
probability amplitude ψ(xi|{xj<i}). (b) This RNN cell is ap-
plied to each site of a two-dimensional lattice, and the RNN
traverses the lattice row by row in a zig-zag path to calculate
the total probability amplitude of a configuration. Note that
the hidden state is passed on in both the vertical and hori-
zontal direction, respecting the geometry of the system under
study. This probability amplitude is then used for the vari-
ational optimization of the scaled cumulant-generating func-
tion θ(s).

probability distribution for activity adopts for long times
the large-deviation form P (K) ≈ e−tJ(k), where the rate
function J(k) quantifies the likelihood of observing atyp-
ical values of activity [2, 17]. Information equivalent to
that contained in J(k) can be obtained from its Legendre
transform, the SCGF: θ(s) = −mink (sk + J(k)) [17].

The SCGF can be obtained as the largest eigenvalue
of a modified or tilted generator W s, which we shall do
using a variational method. The matrix elements of W s

connecting microstates x and y are

W s
xy = Wxye

−s(1− δxy)−Rxδxy. (2)

Here Wxy are the matrix elements of the original genera-
tor, in this case Eq. (1), and Rx =

∑
y 6=xWxy [17, 38, 39].

The dynamics described by the tilted generator W s

obeys detailed balance, so that a similarity transforma-
tion P−1W sP = Hs can be performed. Here Hs is an
Hermitian matrix with the same eigenvalue spectrum as

W s. It reads [2]

Hs =
∑
i

fi[e
−s

√
c(1− c)σxi

− c(1− ni)− (1− c)ni],
(3)

where σx is a Pauli matrix. The SCGF can
therefore be obtained by solving the eigenproblem
Hs|ψ(s)〉 = θ(s)|ψ(s)〉, where the eigenvectors |ψ(s)〉
contain the configurational probabilities in the long-time
limit for trajectories conditioned to have dynamical ac-
tivity 〈k〉s = −dθ(s)/ds. Because Hs is Hermitian, the
SCGF obtained using a variational method results in a
lower bound on the exact SCGF; variational optimiza-
tion can however still be applied for systems where de-
tailed balance is violated, such as asymmetric simple ex-
clusion processes [29, 31]. The large-deviation properties
of the one-dimensional FA model are well-studied. In the
limit of large system size there exists a singularity in the
SCGF of the activity at a size-dependent value of s. Sin-
gularities in the SCGF are often associated with phase
transitions — in this case a dynamical phase transition
between an active and an inactive phase [2, 30, 40–42]
— though this is not always the case [43]. In what fol-
lows, we show that a neural-network state ansatz can
determine the scaling behavior of similar large-deviation
singularities in a two-dimensional kinetically constrained
model, and can describe the spatial correlations of tra-
jectories displaying atypically large activity.

Recurrent neural-network states— Artificial neural
networks can be used within a variational ansatz by map-
ping configurations x ≡ (x1, . . . , xN ) of an N -site lat-
tice system to their corresponding probability amplitude
ψ(x), which defines the state |ψ〉 =

∑
x ψ(x)|x〉. This

ansatz has been shown recently to be capable of repre-
senting highly entangled quantum systems [28, 44–63],
and has found use in quantum state tomography [64–
67]. The expressivity of the neural-network ansatz de-
pends on the architecture of the neural network, and
typical choices include restricted Boltzmann machines,
fully-connected and convolutional neural networks, and
autoregressive neural networks. Here we use autoregres-
sive neural networks, a popular architectural choice for
complex machine learning tasks such as natural language
processing, sequence generation, or handwriting recog-
nition [68–72]. A state defined by such a network can
be sampled in parallel without Markov chains, which is
particularly useful for physical regimes in which Markov
chains struggle to propose uncorrelated configurations
(such as in glassy systems), and allows for the efficient
use of state-of-the-art computing infrastructure such as
massively parallel graphical processing units. Examples
of autoregressive neural networks include PixelCNN [61]
and recurrent neural networks (RNN) [62, 63]. We use
the RNN ansatz of Refs. [62, 63], which was shown to be



3

10−4 10−3 10−2 10−1

s

−10−4

−10−3

−10−2

θ(
s)
/
L

2
(a)

L = 8
L = 12
L = 16
L = 20
L = 24
L = 28
L = 32

10−4 10−3 10−2 10−1

s

10−3

10−2

10−1

100

〈k
〉 s
/
L

2

(b)

0.00 0.25 0.50 0.75 1.00

k/L2

0.0

0.8

1.6

J
(k

)/
L

2
(×

1
0
0
)

(c)

10−3 10−2

1/L2

10−4

10−3

10−2

s c

c = 0.5
c = 0.3
c = 0.1

FIG. 2. (a) Scaled cumulant-generating function θ(s) of the two-dimensional Fredrickson-Andersen model at c = 0.5 with two-
dimensional recurrent neural-network states, on L×L square lattices with length between L = 8 and L = 32. Inset: Scaling of
the location sc of the singularity in the SCGF with the number of lattice sites for three values of c. (b) The dynamical activity
〈k〉s = −θ′(s) per lattice site. (c) The rate function J(k) for L = 8, 16, 32.

highly efficient in the optimization of two-dimensional
quantum systems. The probability amplitude of a con-
figuration x with an RNN ansatz is defined as

ψ(x) =

N∏
i=1

ψ(xi|xi−1, . . . , x1), (4)

where ψ(xi|xi−1, . . . , x1) is a conditional probability
amplitude depending entirely on {xj<i} encountered
earlier on the lattice. An RNN is defined by its el-
ementary building block, the RNN cell, which is a
parametrized non-linear function that sweeps over the
lattice site-by-site and is used to calculate ψ(xi|{xj<i})
for each. For a one-dimensional configuration x, the
RNN cell receives at each lattice site i the “visible” state
xi−1 from the previous site, as well as the “hidden”
state vector hi−1, which contains information from the
previously encountered degrees of freedom {xj<i} and
serves as a form of memory. From this, the RNN cell
calculates the hidden state of the current lattice site,
hi. This hidden state is processed further to obtain
ψ(xi|{xj<i}), and is also passed to the next site. In
order to calculate the probability amplitude ψ(x) of
a configuration x, we start from an initial visible and
hidden state and traverse the lattice site by site with the
RNN cell to calculate ψ(xi|{xj<i}); finally, we multiply
these conditional probability amplitudes per Eq. (4).
To draw a new configuration x distributed according
to |ψ(x)|2, again starting from an initial visible and
hidden state, we sample at each site a new visible state
xi from the distribution P (xi|{xj<i}) = |ψ(xi|{xj<i})|2.
Together with the new hidden state, this quantity is
used as input for the next site. We repeat this process
N times. Because the sampling of new configurations x
and x′ is independent, all operations can be performed
in parallel. The RNN ansatz can be naturally extended

to higher dimensions; for a two-dimensional system, we
provide the RNN cell with a hidden and visible state
from two directions (Fig. 1a), and traverse the lattice
in a zig-zag path (Fig. 1b). The expressivity of this
neural-network ansatz is determined by the choice of the
RNN cell and by the dimension of its hidden state vector
dh, also known as the number of hidden units. The
weights of the neural network are updated according
to the variational principle: to determine the SCGF in
this work, weights are optimized so that 〈ψ|Hs|ψ〉 is
maximized. Additional details and schematics describing
this ansatz and its optimization are provided in the SM.
Because the RNN cell itself is not explicitly dependent
on the number of lattice sites of the system, it serves as
an optimized starting point for further study of large
systems: an RNN cell is first optimized on small lattices,
which is computationally relatively cheap, after which it
can be optimized for a larger system, often requiring only
a few hundred iterations until convergence [63]. Hence,
the more costly parts of the optimization procedure,
such as determining the optimal hyperparameters and
avoiding local minima, are only performed for a small
lattice, and obtaining results on very large lattices
becomes computationally efficient.

FA model— Having first verified the efficacy of the
RNN states in computing large-deviation functions for
the one-dimensional FA model and comparing its accu-
racy to previous results using DMRG (see SM), we turn
to the previously unstudied large-deviation behavior of
the FA model in two dimensions. To this end we use
the two-dimensional RNN shown in Fig. 1. Obtaining
large-deviation functions in two dimensions with tensor
networks has so far been limited to exclusion processes,
using either DMRG [31] or projected entangled pair
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states (PEPS) [32]; similar two-dimensional models have
also been studied exactly or with macroscopic fluctuation
theory [73–75]. Though shown to be very accurate for
two-dimensional quantum systems, the computation of
tensor network states for two-dimensional systems is
typically expensive, requiring either a large number of
variational parameters or scaling unfavorably with the
number of parameters. Autoregressive neural-network
states were recently used to study two-dimensional
quantum systems, and have been shown to outperform
DMRG [62] and PEPS [61] for several prototypical
models while using far fewer parameters.

To describe the dynamics of the two-dimensional FA
model, we first optimize neural-network states for an
8×8 lattice. The configuration with all sites in the down
state is disconnected from the rest of configuration space
due to the kinetic constraints; we only consider dynamics
without this configuration during our optimization. In
Fig. 2a, we show the resulting SCGF at c = 0.5 and
for a range of s-values. The dynamical activity can
be calculated as a numerical derivative of the SCGF;
〈k〉s = −θ′(s) (Fig. 2b). Studying the large-deviation
behavior of the dynamical activity by varying s reveals a
singularity in the SCGF at sc which separates an active
and an inactive sector, similar to observations in one
dimension. To further characterize this singularity, we
calculate how sc varies with the number of lattice sites
N . Using the RNN states obtained for the 8× 8 system
as a starting point, we further optimize neural-network
states for progressively larger system sizes, repeatedly
increasing the linear system size by four sites at a
time in order to obtain the SCGF for system sizes up
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FIG. 3. Average density in the active sector (s < 0) of the
South-or-East model, as a function of ν ≡ 1− es, for an 8× 8
system at c = 0.1. On the right, we show a density profile for
each of the levels in 〈n〉ν .

to N = 1024. While the training of the initial RNN
state for the 8 × 8 system requires O(104) optimization
iterations, each successive optimization upon increasing
system size typically converges after less than O(102)
iterations. The result of this procedure, shown in Fig. 2,
reveals that the value of sc(N), obtained from the
location of the peak of the susceptibility χ(s) = θ′′(s),
moves toward zero as the system size is increased. In the
inset of Fig. 2a, we show the scaling of sc(N) obtained
for three different values of c. For each c, the scaling is of
the form sc ∼ N−α where the exponent α & 1 increases
slightly for smaller values of c. A similar value for these
exponents was recently found for the one-dimensional FA
model [30]. We discuss a collapse of the SCGF in the SM.

Having access to the SCGF allows us to determine,
via a Legendre transform, the rate function J(k). The
latter defines the distribution P (K) of the activity in the
long-time limit, via P (K) ≈ e−tJ(k). In Fig. 2c we show
the rate function for three different system sizes. These
rate functions demonstrate the strongly non-Gaussian
distribution of the dynamical activity. In the SM we
verify that this is also the case for other values of c.

South-or-East model—The South-or-East model is a
two-dimensional generalization of the East model, and
has a directed kinetic constraint equal to the number
of nearest-neighbor up-spins to the left and above each
spin. We consider here only configurations with the spin
in the top left corner in the up-state, which allows access
to the largest ergodic component of configuration space.
Studying the SCGF of the South-or-East and 2D FA
models reveals that both models exhibit qualitatively
similar large-deviation behavior. However, the spatial
structure of trajectories with atypically high activity
(s < 0) as revealed by time-integrated density profiles
shows markedly different behavior. The average density
of up-spins can be measured as 〈n〉s = 1

L2

∑N
i=1〈ni〉s;

here 〈ni〉s = 〈ψs|ni|ψs〉 where |ψs〉 is the eigenstate of
Hs (Eq. (3)) with eigenvalue θ(s). While the average
density in the active sector of both models is similar at
large values of c, more interesting behavior emerges at
small values of c . 0.1. For the one-dimensional East
model, it was proven [11] and later numerically veri-
fied [30] that for s < 0 the average density as a function
of ν ≡ 1 − es shows distinct plateaus as ν increases for
very small values of c. In Fig. 3, we demonstrate that
two-dimensional RNN states now allow us to uncover
that similar plateau-like features are also present for
the South-or-East model at c = 0.1. The corresponding
density profiles exhibit large anticorrelations in the form
of diagonal bands of up-spins surrounded by vacant
bands. The number of such bands is different between
the density levels. This behavior contrasts with that of
the 2D FA model, where density plateaus are absent
even for very small c and the local density profiles
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are homogeneous up to boundary effects (the spatial
structure of the 2D FA model is discussed in the SM).

Outlook— We have presented a study of the large-
deviation behavior of two two-dimensional kinetically
constrained models. In particular, we have characterized
the scaling behavior of the dynamical activity of the
two-dimensional Fredrickson-Andersen model, and have
described the spatial structure of trajectories with
atypically high activity for the South-or-East model.
This was made possible by introducing artificial neural-
network states as a variational ansatz for obtaining
large-deviation functions of classical dynamical systems,
drawing from its success in the variational optimization
of quantum ones. Our results highlight how the neural-
network state ansatz can be employed to efficiently and
accurately study large-deviation functions. Although
we have focused our study on prototypical models, this
ansatz is broadly applicable. Given the rapid improve-
ments being made to the neural-network state ansatz,
we expect it to play an important role in the study
of dynamical large deviations for higher-dimensional
systems.
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