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Condensed matter systems provide alternative ‘vacua’ exhibiting emergent low-energy properties drastically
different from those of the standard model. A case in point is the emergent quantum electrodynamics (QED)
in the fractionalized topological magnet known as quantum spin ice, whose magnetic monopoles set it apart
from the familiar QED of the world we live in. Here, we show that the two greatly differ in their fine-structure
constant α, which parametrizes how strongly matter couples to light: αQSI is more than an order of magnitude
greater than αQED ≈ 1/137. Furthermore, αQSI, the emergent speed of light, and all other parameters of the
emergent QED, are tunable by engineering the microscopic Hamiltonian. We find that αQSI can be tuned all
the way from zero up to what is believed to be the strongest possible coupling beyond which QED confines.
In view of the small size of its constrained Hilbert space, this marks out quantum spin ice as an ideal platform
for studying exotic quantum field theories and a target for quantum simulation. The large αQSI implies that
experiments probing candidate condensed-matter realizations of quantum spin ice should expect to observe
phenomena arising due to strong interactions.

The fine structure constant of QED, αQED ≈ 1/137, is fa-
mously measurable in a semiconductor device [1], oblivious
to any imperfections of the crystal, and perfectly immutable
compared to measurements in vacuo [2]. By contrast, a fine
structure constant is also known to emerge entirely indepen-
dently in quantum condensed matter phases whose emergent
excitations mimic QED [3, 4]. This emergent fine-structure
constant has no reason to be as constrained as that in QED and
this allows emergent QEDs (eQED) to probe physical regimes
which are usually difficult to access either theoretically or ex-
perimentally.

Among the various microscopic models which host an
eQED [3, 8–11], the ones which have received the most at-
tention recently in experiments go under the name of quan-
tum spin ice [12–16]. The term quantum spin ice (QSI) si-
multaneously refers to a family of models, as well as a class
of rare-earth magnetic materials which approximately realize
the theoretical models. Similar to the prototypical gauge the-
ory of QED which has matter excitations such as electrons
and a gauge boson corresponding to the photon, the eQED
in QSI is a 3+1D compact U(1) gauge theory and has “mat-
ter” excitations [17] — electric charges (which are the spinons
shown in Fig. 1a) and magnetic monopoles — and an (emer-
gent) photon [11, 18]. These emergent photons and spinons
have been established by various theoretical and numerical
studies [19–22], with the magnetic monopoles being the fo-
cus of recent studies [23, 24]. Understanding the properties
of the eQED necessitates not just identification of the low-
energy emergent excitations, but also measuring the various
couplings of the eQED such as the speed of light cQSI. These
can be drastically different from those of usual QED, giv-
ing access to unusual regimes and phenomenology typically
inaccessible in our world. For example, estimates of cQSI

are quite small [11, 14, 21]. This means that experiments
can probe phenomena ranging from the non-relativistic to the
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FIG. 1. a) The pyrochlore lattice of quantum spin ice (QSI) is
formed from corner sharing tetrahedra with spin 1/2s residing at
corners. The spins shown give an example of ice-rule violating tetra-
hedra that correspond to an electric charge-anticharge pair. b) The
emergent electric charges and photons can interact, just as electrons
and photons do in QED, and their interaction strength is given by
the emergent fine structure constant, αQSI. c) The value of αQSI in
the eQED phase of the microscopic QSI Hamiltonian (see Eqn. (2))
shown as a function of µ (with ζ = 0) and ζ (with µ = 0). Error bars
represent the standard deviation of αQSI among its shape-dependent
variations at a fixed (µ,ζ). By varying the 3NN potential, α is tun-
able up to the maximum value αc (dotted line) beyond which it is
conjectured that any compact QED in 3+1D confines [5–7].

ultra-relativistic, where the electric charges move faster than
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the speed of light and emit Cerenkov radiation.

However, there is currently no estimate of the elec-
tric charge eQSI and hence fine-structure constant αQSI ≡
e2

QSI/~cQSI (in fact, in any microscopic model with an
eQED). This dimensionless quantity characterizes how
strongly the spinons (which are the electric charges of the the-
ory) interact with the emergent photon (see Fig.1b). In usual
QED, the small value of αQED justifies a perturbative treat-
ment, while also making some processes like photon-photon
scattering very difficult to observe. Determining the value
of αQSI would allow us to guide theoretical treatments of
its eQED and also potentially place the eQED in a different
regime to QED.

Here, we determine the fine-structure constant αQSI in the
eQED of QSI. Besides being an order of magnitude larger
than αQED, it is tunable over the complete theoretical range
by adding local interactions to the microscopic Hamiltonian.
This also constitutes a clear example where modifying the mi-
croscopic details of a theory changes the emergent couplings
of the low-energy theory in a straightforward manner. Our
main results are displayed in Fig. 1c and in Table I. From
a methodological perspective, the framework we have devel-
oped using large-scale exact diagonalization (ED) techniques
in constrained spaces may be of additional interest in deter-
mining the low-energy properties of other microscopic models
with exotic emergent theories.

Microscopics— Spin ice is modeled by spin-1/2 particles
residing on the corners of the tetrahedra of the pyrochlore lat-
tice, shown in Fig. 1a [12]. Each spin is restricted to point
either toward or away from the centers of the two adjacent
tetrahedra. With this restriction, the classical ground state fol-
lows a simple rule [25]: each tetrahedron has two spins point-
ing in and two pointing out. This “2-in 2-out” local constraint
is called the ice rule, named after a similar constraint in wa-
ter ice [26]. Classical spin ice is well understood in terms
of fractionalized spins forming an emergent classical electro-
magnetism, with the ice rule playing the role of Gauss’s law.
Local violations of the ice rule then correspond to spinons and
antispinons [27], which we refer to as electric charges and an-
ticharges. At low temperatures, quantum fluctuations allow
tunneling between classical configurations satisfying the ice
rule, giving rise to an eQED [11, 19–22, 28–31]. In addition
to the electric charges, there are now magnetic monopoles as
well as photons corresponding to coherent ring-exchange pro-
cesses within the ice manifold.

The microscopic Hamiltonian to describe QSI materials
was derived, and studied in considerable detail, in the con-
text of the rare earth pyrochlore materials [12, 29, 32]. For
the present purposes, it is sufficient to consider a simplified
model given by the canonical QSI Hamiltonian which con-
sists of two parts [11]: a ‘classical’ term enforcing the ice
rules, which determines the cost of an electric charge; and a
‘quantum’ resonance term, also known as a loop flip or ring
exchange term, W7, which coherently flips a sequence of six

spins arranged head to tail around a hexagon → ,
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∑
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The first sum runs over all bonds of the pyrochlore lattice and
the second over all of its hexagonal plaquettes. A hexag-
onal plaquettes on which W7 acts is shaded in Fig. 1a.
This Hamiltonian describes the standard low-energy dynam-
ics of geometrically frustrated systems capturing phenomena
ranging from high-temperature superconductivity to frustrated
magnetism [33], and can be obtained as a low-energy ef-
fective theory of the general microscopic quantum spin ice
model [11, 30] Furthermore, it can be formally rewritten as
a compact U(1) lattice gauge theory [11, 20], with W7 the
smallest possible Wilson loop.

To effect the above-mentioned tuning, we additionally con-
sider a pair of simple perturbations to Heff :
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∑
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The first summation over 〈〈〈i, j〉〉〉 runs over the third-nearest
neighbors (3NN), which are pairs of spins across from each
other on a hexagonal plaquette. This two-body Ising term
generically exists in material realizations [29] and can be en-
gineered in many current quantum simulators [34–36]. It
prefers spins across from each other to be (anti)parallel (de-
pending on the sign of ζ), hence affecting the number of flip-
pable hexagons ( ). The second term is a Rokhsar-Kivelson
(RK) potential, which directly counts the number of flippable
hexagons and, as a six body term, is less easy to control ex-
perimentally. However, the ground state is exactly solvable
at the RK point [37] (ζ = 0and µ = 1) which allows us
to validate our numerics by comparing to previous analytic
and numerical studies [10, 20, 21]. We note that tuning ei-
ther of these perturbations to be sufficiently strong causes the
system to transition out of the deconfined QED phase, which
we find persists for −0.5 . µ ≤ 1 at ζ = 0 [20], and for
−0.2 . ζ . 1 at µ = 0 (see supplemental materials).

Macroscopic eQED—The low-energy theory of eQED is
the familiar Maxwell Hamiltonian

HMaxwell =
1

8π

∫
d3x

(
|E|2 + c2QSI |B|

2
)
, (3)

where B = curlA, and E and A are the canonically conju-
gate electric field and vector potential operators, respectively.
Throughout this manuscript, we use units such that the emer-
gent Coulomb energy between two electric charges (magnetic
monopoles) is e2

QSI/r (m2
QSI/r). We fit the low-energy spec-

tra of Eqn. (1) in the constrained Hilbert space obeying the
classical ice rules, using results from Eqn. (3) to extract eQSI

and cQSI. See the supplemental materials for a detailed ac-
count of the ED techniques used to access the spectra of sys-
tems with up to 96 spins.

Since electric charges cannot be excited in the constrained
Hilbert space, it may appear that eQSI cannot be probed.
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However, it is possible to have electric field lines looping
through the periodic boundaries without violating the ice
rules [11, 20]. As a gedanken experiment, an elementary unit
of the electric field can be created by first exciting an electric
charge-anticharge pair, moving the electric charge around the
lattice through a periodic boundary, and then annihilating it
with the electric anticharge. This leaves behind an elementary
unit of electric flux passing through the boundary. As the dy-
namics of the QSI Hamiltonian preserve the ice rule locally,
the Hilbert space decomposes into electric topological sectors
φ = (φ1, φ2, φ3) ∈ Z3, where φi gives the number of ele-
mentary units of electric flux through the ith direction.

The electric field created by this procedure is uniform when
the lattice is coarse-grained. By computing the ground state
energy in each electric topological sector, we can thus extract
the value of eQSI. As shown in the supplemental material, E
can be found using Gauss’s law which then gives an expres-
sion for the electric field energy density

u = e2
QSI

2π|Qφ|2

a4
, (4)

where a is the lattice constant of the face-centered cubic lattice
underlying the pyrochlore lattice andQ is a dimensionless 3×
3 matrix characterizing the shape of the periodic volume. The
inset of Fig. 2a shows the fit of Eqn. (4) to the u ED data at
µ = ζ = 0, yielding eQSI = 0.20(1)

√
ag. The ED data is

obtained across a range of finite-size samples (up N = 96
spins and 180 different shapes). The spread of the data about
the fit, and the corresponding variation in eQSI, comes from
the variations in the measurement for different lattice shapes
occurring due to the limited sizes accessible with ED.

Fig. 2a shows eQSI measured at different values of ζ and
µ in Eqn. (2) along the µ = 0 and ζ = 0 axes, respectively.
As ζ becomes increasingly positive and µ increasingly nega-
tive, eQSI increases. This has a simple interpretation. Both of
these perturbations increase the microscopic energy for spins
across hexagonal plaquettes to be parallel, which in terms of
the eQED correspond to states with local electric flux in the
direction of the parallel spins. This increases the energy of the
sectors with global electric flux, producing a larger eQSI.

We measure cQSI using the ground state dispersion of
Eqn. (1) translated into the first Brillouin zone. At small mo-
menta, one of the photon’s key characteristics is its relativistic
dispersion ω(k) = cQSI|k|. The ED data used to extract the
fit is obtained across the same range of samples as in the mea-
surement for eQSI. We obtain the value of cQSI by using the
Gaussian approximation to the photon dispersion on the py-
rochlore (see supplemental material for derivation): [21]

ω(k) =

√
c2QSI

a2
λ(k) +Mλ2(k), (5)

where cQSI and M are fitting parameters and λ(k) = 12 −
4
∑

i>j cos (kia/2) cos (kja/2). The inset of Fig. 2b shows
the momentum dependence of the ground state energy at µ =
ζ = 0, which upon fitting Eqn. (5) gives cQSI = 0.51(6)ag/~.

a
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FIG. 2. a) The emergent electric charge eQSI as a function of RK
(µ,ζ = 0) and 3NN (µ = 0, ζ) potential. A representative scatter plot
of this data is shown in the inset (data corresponding to µ = ζ = 0)
with associated fit (red line). The dashed lines are fits giving eQSI =

0.20
√
ag(1− µ) at ζ = 0 and eQSI = 0.38

√
ag(0.28 + ζ) at µ =

0. We note that the former dependence is predicted near the RK
point at µ = 1 [10, 20], while the latter is a guide to the eye. b) The
emergent speed of light cQSI as a function of RK and 3NN potential.
Representative scatter plot of this dispersion is shown in the inset (at
µ = ζ = 0) with associated fit (red line). Dashed lines are fits giving
cQSI = 0.51ag

√
1− µ/~ and cQSI = 0.78ag

√
0.41 + ζ/~ along

the ζ = 0 and µ = 0 axes, respectively. Again, we note that the
dependence of c on µ near the RK point is consistent with previous
results [10, 21]. The error bars in both panels represent the standard
deviation of eQSI and cQSI among its shape-dependent variations at
a fixed (µ,ζ). Furthermore, in both insets, scatter points are brighter
the denser their neighboring data points are.

In addition to variation of cQSI coming from lattice shape de-
pendence, there may be spread from the fit due to magnetic
monopole states at higher momenta that the Gaussian pho-
ton dispersion does not capture [28]; in particular, we exclude
|k|a > π from the fit, where clear irregularities are visible.
We note that the fit value is similar to a previous numerical
measurement cQSI = 0.6(1)ag/~ [20] and analytical estimate
c = 0.41ag/~ [38] using semi-classical techniques.

Using the ED spectra along the µ and ζ axes, Fig. 2b
shows that like eQSI, cQSI is indeed also tunable. We see
a similar trend as previously: cQSI increases as states with
a greater number of flippable hexagons become energetically
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Candidate QSI Material Vacuum QED

α 1/10 1/137

c 1 m s−1 3.0× 108 ms−1

e 10−4
√
eV nm 1.2

√
eV nm

m 10−3
√
eV nm 82.2

√
eV nm

TABLE I. Numerical values of the fine structure constant, α =
e2/~c, the speed of light, c, the elementary electric charge e, and the
elementary magnetic charge from Dirac quantization, m = e/2α.
In our units, the electric (magnetic) charge squared corresponds to
the energy between two electric charges (magnetic monopoles) held
one nanometer apart. The second column uses characteristic scales
obtained from the pyrochlore oxides, corresponding to µ = ζ = 0,
a = 10Å, and g ∼ 1µeV. We stress that the dimensionful values of
a and g do not affect αQSI. The corresponding values in the vacuum
QED of our universe are shown in the third column.

favored. This can be understood qualitatively by noting that
the photons are collective motions of fluctuating electric field
loops [3]. Since a hexagon has to be flippable to support lo-
cal electric field loop fluctuations, the photon can propagate
to flippable hexagons more rapidly than unflippable ones. At
long wavelengths, this corresponds to an increase of the speed
of light with increased density of flippable hexagons.

Fine structure constant— In our units, the fine structure
constant is given by α = e2/~c. From our measurements of
eQSI and cQSI, upon taking their quotient to find αQSI the di-
mensionful constants a and g crucially cancel. Fig. 1c shows
αQSI as a function of ζ and µ along the µ = 0 and ζ = 0 axes.
Varying µ, we see that αQSI is tunable ranging from exactly
zero at the RK point all the way to 0.1 at µ = −0.5, be-
yond which the system undergoes a first order transition into
an ordered state [20]. Along the µ = 0 axis, αQSI is 0.06
at ζ = −0.15 and increases to 0.2 at ζ = 1. At ζ ≈ 1, the
Hamiltonian undergoes a phase transition into a finite momen-
tum phase, suggesting the development of long-range mag-
netic order and confinement of the eQED (see supplemental
material). It is remarkable to note that the value αQSI takes at
ζ = 1 corresponds to αc ≈ 0.2 at which pure lattice QED on
the cubic lattice is known to confine [39]. Indeed, αc ≈ 0.2
has been argued to be the limit of stability of the deconfined
phase in general [5–7]. Thus, we find that we can tune αQSI

over the entire range of fine structure constants allowed by a
deconfined QED: 0 ≤ α ≤ 0.2.

The dimensionful quantities eQSI and cQSI we have cal-
culated depend on the lattice parameters a and g. There are
a large variety of rare-earth pyrochlore oxides that are QSI
candidates, such as Tb2Ti2O7, Yb2Ti2O7, Pr2Sn2O7, and
Pr2Zr2O7 [12, 32, 40]. The lattice constant in these materi-
als are approximately a ≈ 10Å [40] and typical energy values
of a candidate QSI material correspond to g ≈ 1µeV [29, 30].
Using these values, we can estimate eQSI and cQSI, which
are shown in table I along with the corresponding values in
vacuum QED. This highlights the exotic nature of the eQED

in QSI: the emergent photon travels a hundred million times
slower than the speed of light and the emergent fine struc-
ture constant is ten times larger than its vacuum QED coun-
terpart. The largeness of αQSI implies substantial interac-
tions between spinons and emergent photons in QSI, consis-
tent with deviations from non-interacting theory expectations
for the dynamic structure factor observed in quantum Monte
Carlo at finite temperature [28]

The experimental effort to establish that these candidate
materials realize the deconfined eQED phase at low temper-
ature have largely been focused on finding evidence for the
existence of a linearly dispersing transverse photon and frac-
tionalized gapped spinons – the non-interacting structure of
the emergent particles. However, the size of αQSI suggest that
distinctive experimental signatures may actually follow from
the interaction effects between the particles. For example,
due to αQSI, we expect the dynamic structure factor observed
in neutron scattering to exhibit the presence of well-defined
spinon-antispinon ‘Rydberg’ bound states, a strong Sommer-
feld enhancement of the pair-production continuum at small
momenta, and a strong diffusive suppression of the contin-
uum at large momenta due to emergent Cerenkov radiation
within the sample [41]. Observation of such effects would
thus constitute strong evidence for the eQED phase in these
materials. The values of the constants determined here are
inputs for quantitative comparison between theory and such
experiments.

Finally, we note that our results makes QSI a particularly
attractive target for noisy intermediate-scale quantum simu-
lations [42] of strongly coupled, deconfined QED in other
experimental platforms. The microscopic construction re-
quires only one two-level qubit per lattice link coupled by
two-body local interactions; there have accordingly been de-
tailed engineering proposals in, for example, ultracold Ryd-
berg atoms [43], and demonstrations of closely related 2D ice
in superconducting annealers [34]. The Schwinger model of
(1+1)D QED has in fact been realized in multiple quantum
simulators recently [44, 45]; however, it only exists in the
confined phase. Our results show that the simple 3NN term
(ζ) provides a direct tuning parameter for the emergent fine
structure constant over a broad range to the strongest available
coupling, allowing the controlled experimental investigation
of strong coupling QED phenomena in (3+1)D. By varying ζ
in space or time, this also gives a natural setting for study-
ing the consequences of a space-time dependent fine struc-
ture constant – which contrasts with the usual QED where a
large amount of effort concludes no such variation exists [46].
By varying the temperature and the corresponding density of
emergent matter excitations, this further provides a platform
for studying the behavior of strongly coupled plasma contain-
ing both electric charges and magnetic monopoles.

Originally introduced by Sommerfeld [47] to describe the
fine structure of the spectral lines in Hydrogen, the smallness
of the fine structure constant α ∼ 1/137 has evolved into one
of the great mysteries of our universe. Its smallness enables
the description of physical law in terms of weakly coupled
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matter and light, even as the largeness of 1/α ∼ 137 deter-
mines the maximum stable atomic numbers of the periodic
table and thus the richness of chemistry. However, despite al-
most a century of effort, there is no microscopic grand unified
theory which predicts this fundamental parameter of our uni-
verse. By studying the emergent phenomena provided by the
strongly coupled eQED of spin ice, perhaps new light can be
shed on this fundamental enigma.
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