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Abstract
This theoretical work initiates contact between two frontier disciplines of physics, namely atomic superfluid rotation and

cavity optomechanics. It considers an annular Bose-Einstein condensate (BEC), which exhibits dissipationless flow and is a
paradigm of rotational quantum physics, inside a cavity excited by optical fields carrying orbital angular momentum (OAM).
It provides the first platform that can sense ring BEC rotation with minimal destruction, in situ and in real time, unlike
demonstrated techniques, all of which involve fully destructive measurement. It also shows how light can actively manipulate
rotating matter waves by optomechanically entangling persistent currents. Our work opens up a novel and useful direction in
the sensing and manipulation of atomic superflow.

PACS numbers: 42.50.-p, 37.30.+i, 37.10Vz,03.75.Gg

Introduction.– Persistent currents in annularly-
trapped atomic superfluids [1, 2] offer a highly control-
lable laboratory for studying phenomena associated with
quantum circulation, such as phase slips [3–6], hystere-
sis [7], shock waves [8], matter-wave interferometry [9],
gyroscopy [10–12], atomtronic circuits [13], Josephson
physics [14], time crystals [15], topological excitations
[16, 17] and cosmological simulations [18]. All these
works rely on the fact that a BEC confined on a ring
- unlike one contained in a simply-connected trap [19–
21] - can support vortices for macroscopically long times
[1].

Characterizing the rotational state of a ring BEC is
therefore of fundamental importance, with implications
for several areas of physics. In this context it is essential
to note that the information about the angular momen-
tum of a BEC in a rotational eigenstate is carried in
its phase (in the form of its winding number) and not
in its density profile, which remains uniform around the
ring. However, all methods sensitive to the BEC winding
number demonstrated so far involve absorption imaging
of the atoms in the ring and are therefore fully destruc-
tive of the condensate [1, 2, 4, 9, 13, 18, 22].

On the other hand, minimally destructive detection by
removing a few atoms from the BEC for each measure-
ment [23], or nondestructive imaging using light far off-
resonance on an atomic transition [24], are only sensitive
to the atomic density and not to the BEC phase. Such
experiments in fact rely on measuring vortex precession
in order to infer the BEC angular momentum. But this
technique cannot be used on an annularly trapped BEC,
as a vortex on a ring does not precess, since its core is
pinned to the ring center. The difficulties enumerated so

far may be overcome, in principle, by non-destructively
tracking superfluid rotation by off-resonantly imaging a
precessing density modulation impressed on the conden-
sate [25], or by continuously monitoring the number of
atoms tunneling out from the ring [26]. Detection of
more involved properties of the rotating condensate, such
as entanglement, however, involve destructive protocols
exclusively [11, 27].

FIG. 1. BEC with winding number Lp rotating in a ring trap
of radius R, probed by modes carrying OAM ±l~ in a (i)
Fabry-Perot cavity with transmitted field aout (ii) hemispher-
ical cavity, and (iii) bottle-shaped optical microresonator.
Shaded regions of the ring correspond to intensity maxima
of the optical modes for l = 2.

In this Letter we propose to solve the outstanding
problems related to the measurement of ring BEC rota-
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tion by exploiting the techniques of cavity optomechan-
ics, a versatile paradigm for sensing the motion of me-
chanically pliable objects based on their interaction with
electromagnetic fields confined to an optical resonator
[28–31].
Setup.—The configuration of interest is shown in

Fig. 1(i), [variations on the basic geometry are displayed
in Figs. 1(ii) and (iii), respectively] namely, an atomic
(e.g. Sodium) BEC confined in a toroidal trap [32–36]
located at the center of an optical cavity. The potential
experienced by each atom of mass m in the condensate
is [35]

U(ρ, z) =
1

2
mωρ(ρ−R)2 +

1

2
mωzz

2, (1)

where ωρ and ωz are the harmonic trapping frequencies
along the radial and axial directions, respectively and R
is the radius of the ring trap. In the potential U(ρ, z) the
dynamics along the radial (ρ), axial (z) and azimuthal
(φ) directions decouple. We assume that all atoms re-
main in the same quantum state along the radial and
axial directions during dynamical evolution; we focus in-
stead on the azimuthal motion of the atoms, i.e. along
φ, which is not subject to any trapping.
This one-dimensional description is within reach of

state-of-the-art laboratories [36], has been successful in
modeling experiments which include radial degrees of
freedom [4, 17, 37], and applies if [35]

N <
4
√
πR

3aNa

(

ωρ

ωz

)1/2

, (2)

where N and aNa are the number and ground state scat-
tering length of the Sodium atoms in the condensate,
respectively.
A superposition of two frequency-degenerate optical

beams derived from the same laser and carrying OAM
±l~ is now injected into the cavity to probe the BEC.
Such coherent superpositions have been experimentally
demonstrated to create an angular lattice inside the cav-
ity about its axis [38]. The beams are blue detuned far
from the ground-to-excited state atomic transition and
therefore interact weakly with the atoms via the dipole
force, with the effect of spontaneous photon scattering
being negligible. Photon decay from the cavity will be
accounted for below.
The azimuthal motion of the BEC is described, in the

frame rotating at the laser drive frequency, by the one-
dimensional Hamiltonian [39, 48–50]

H =

∫ 2π

0

Ψ†(φ)

[

−~
2

2I

d2

dφ2
+ ~Uo cos

2 (lφ) a†a

]

Ψ(φ)dφ

+
g

2

∫ 2π

0

Ψ†(φ)Ψ†(φ)Ψ(φ)Ψ(φ)dφ

−~∆oa
†a− i~η(a− a†), (3)

where the bosonic atomic field operators obey
[Ψ(φ),Ψ†(φ′)] = δ(φ − φ′) and the photonic opera-
tors follow [a, a†] = 1. The first term in the bracket on
the first line of Eq. (3) represents the rotational kinetic
energy of the atoms, with I = mR2 the atomic moment
of inertia about the cavity axis. The second term in
the bracket describes the interaction of the atoms with
the optical lattice such that Uo = g2a/∆a, where ga
is the strength of the interaction between one photon
and one atom and ∆a is the detuning of the optical
frequency from the atomic transition. The second line
of Eq. (3) represents two-body atomic interactions, with
strength g = 2~ωρaNa/R [35, 50]. The first term in the
third line of Eq. (3) is the cavity field energy in the
rotating frame of the drive; the detuning ∆o equals the
driving field frequency minus the cavity resonance ωo.
The last term of Eq. (3) is due to the cavity drive and
η =

√

Pinγo/~ωo where Pin is the optical power and γo
is the cavity linewidth.

The condensate may be set to rotation using a variety
of techniques, including optical stirring [1, 2, 4], employ-
ing radio-frequency fields [33] or via quenching [17] to
impart a winding number Lp to the BEC. We do not
consider further the details of this process as they are
well-addressed in the literature, and as our main task in
the present work is to measure the condensate winding
number Lp (and thus the angular momentum Λ = ~Lp).

Let us now consider the relevant physical processes in
our system. The presence of the optical lattice causes
some atoms in the condensate to coherently Bragg scat-
ter [22] from their rotational state with winding number
Lp to states with Lp±2nl, where n = 1, 2, 3, . . .. The lin-
ear analog of such matter-wave scattering from an optical
lattice inside a cavity has already been demonstrated in
Ref. [48]. We assume the dipole potential to be weak (i.e.
smaller than the chemical potential of the rotating con-
densate), and in that case the number of atoms scattered
is small and only first order diffraction, Lp → Lp ± 2l, is
appreciable.

Based on this physical picture, we propose an ansatz

for the atomic field

Ψ(φ) =
eiLpφ

√
2π

cp +
ei(Lp+2l)φ

√
2π

c+ +
ei(Lp−2l)φ

√
2π

c−, (4)

where the atomic operators obey [ci, c
†
j ] = δij , (i, j) =

p,+,−, and c†pcp + c†+c+ + c†−c− = N . The first term
in Eq. (4) corresponds to the original persistent current
and the remaining two terms are the sidemodes excited
by matter wave diffraction. However, since the number
of atoms in the sidemodes is small, and the mode with
winding number Lp is macroscopically occupied (i.e. its
dynamics are classical), we posit c†pcp ≃ N and introduce

the operators c = c†pc+/
√
N and d = c†pc−/

√
N , where

c†p is now a complex number. Using these relations and
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Eq. (4) in Eq. (3) we get, neglecting all constant terms,

H = ~ωcc
†c+ ~ωdd

†d+ ~

[

G(Xc +Xd)− ∆̃
]

a†a

−i~η(a− a†) + ~g̃C̃, (5)

where G = Uo

√
N/2

√
2, ∆̃ = ∆o − UoN/2, g̃ = g/(4π~),

Xc = (c† + c)/
√
2, and Xd = (d† + d)/

√
2.

The sidemodes are particle-like excitations of the con-
densate and therefore their frequencies

ωc =
~(Lp + 2l)2

2I
, ωd =

~(Lp − 2l)2

2I
, (6)

are quadratic in the respective angular momenta. A
full Bogoliubov analysis actually yields the sidemode fre-
quencies ω′

c,d = [ωc,d(ωc,d+4g̃N)]1/2 [51]. Here, for sim-
plicity, we ensure ωc,d ≫ 4g̃N such that ω′

c,d ≃ ωc,d.
Similar particle-like excitations were earlier created in a
linear analog of our proposal [48, 52]. Finally, ~g̃C̃ in
Eq. (5) represents the effect of atomic interactions. In
the Supplementary Material (SM) [39] we have provided
the full expression for C̃ and shown that its presence does
not essentially affect our proposed protocol, even though
it slightly modifies Eqs. (6), for example.
Neglecting ~g̃C̃, the right hand side of Eq. (5) has

the form of the canonical optomechanical Hamiltonian,
coupling the displacement (e.g. Xc, Xd) of one or more
mechanical oscillators to the cavity photon number a†a
[28]. The corresponding (g̃ ≡ 0) equations of motion are

Ẍc + γmẊc + ω2
cXc = −ωcGa†a+ ωcǫc, (7)

Ẍd + γmẊd + ω2
dXd = −ωdGa†a+ ωdǫd, (8)

ȧ = i
[

∆̃−G (Xc +Xd)
]

a− γo
2
a+ η +

√
γoain, (9)

where dissipation and noise have been introduced accord-
ing to the standard quantum Langevin formalism [28],
and the damping of each condensate sidemode (assumed
to be the same for simplicity) is γm [1, 3]. The me-
chanical and optical fluctuations have zero mean (〈ǫc〉 =
〈ǫd〉 = 〈ain〉 = 0); their correlations will be specified be-
low.
Rotation sensing.—The basic physics underlying our

proposal for sensing of atomic rotation can be readily
understood from a heuristic discussion of Eqs. (7)-(9).
Neglecting damping and noise, and for weak optical driv-
ing, Eqs. (7) and (8) imply that Xc and Xd oscillate at
frequencies ωc and ωd, respectively. From Eq. (9) we can
then see that the cavity optical field is also modulated at
these two mechanical frequencies. Physically, this modu-
lation is due to the density variations in the BEC caused
by atom scattering from the optical lattice; the effect
may also be understood as a rotational Doppler shift im-
printed on the cavity photons by the circulating atoms
[53]. A homodyne measurement of the cavity output field
aout = −ain +

√
γoa [28] (also see Fig. 1), should there-

fore reveal the frequencies ωc,d and thus also the winding

number of the condensate Lp, since in experiments l and
I are known parameters. To confirm quantitatively the
above heuristic arguments, we now present the linear re-
sponse of our system taking quantum noise and damping
into account.

We start with the steady state solutions to Eqs. (7)-
(9), which are Xc,s = −G|as|2/ωc, Xd,s = −G|as|2/ωd,

and as = −η/(i∆′−γo/2), where ∆
′ = ∆̃+G2|as|2Ω and

Ω = (ωc + ωd)/ωcωd. As in conventional optomechanics,
these solutions display bistability, see Fig. 2 [28, 48]. We
note that these bistability curves will likely undergo small
shifts due to coherent non-steady state dynamics [54].
However, our aim is only to establish approximately the
threshold of bistability, and our rotation measurement
(and entanglement generation) will be carried out using
parameters which keep the system monostable (such that
the non-steady-state dynamics are negligible) and thus
orders of magnitude below the bistable regime.
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FIG. 2. Optomechanical bistability. (i) Intracavity photon
number versus cavity drive power for several effective cavity
detunings. Bistability occurs above ∆̃cr/2π = −1.73 MHz,
and between K1 and K2, with the stable branches labeled as
1 and 3. (ii) Intracavity photon number versus effective cavity
detuning for various values of Pin, where bistability appears
at Pcr = 17.7 pW. Parameters used are m = 23 amu, R = 12
µm, N = 104, G/2π = 7.5 kHz, Lp = 1, l = 10, ∆a/2π = 4.7
GHz, ωz/2π = 42 Hz, ωρ/2π = 42 Hz, γm/2π = 0.8 Hz,
γo/2π = 2 MHz, and ωo/2π = 1015 Hz.

To obtain the linear response, we write each vari-
able in Eqs. (7)-(9) as the sum of the steady
state value and a small fluctuation, i.e. M →
Ms + δM for M = Xc, Xd, a, and obtain the
linearized equations as u̇(t) = Fu(t) + v(t), with

u(t) = [δXc(t), δYc(t), δXd(t), δYd(t), δQ(t), δP (t)]
T
,

v(t) =
[

0, ǫc(t), 0, ǫd(t),
√
γoδQin(t),

√
γoδPin(t)

]T
, Yc =

i(c† − c)/
√
2, Yd = i(d† − d)/

√
2, Q = (a† + a)/

√
2, P =

i(a† − a)/
√
2, where the matrix F is provided in the SM

[39]. Fourier transforming, we now consider the homo-
dyne measurement of the fluctuations δPout(ω) in the
cavity output phase quadrature (where ω is the system

response frequency) Pout(ω) = i[a†out(ω)− aout(ω)]/
√
2.

Choosing without loss of generality the cavity drive
phase such that as is real, using the noise correlations
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〈ain(ω)a†in(ω′)〉 = 2πδ(ω + ω′), and

〈ǫc(ω)ǫc(ω′)〉 = 2πγmω

ωc

[

1 + coth

(

~ω

2kBT

)]

δ(ω + ω′),

(10)
and similarly for the other sidemode, and employing
standard methods, we obtain the quadrature noise spec-
trum [28]

S(ω) = Ssn(ω) + Srp(ω) + Sth(ω). (11)

The first two terms in Eq. (11) describe the shot noise
Ssn(ω) = [ω2 + (γ2

o/4)]/4γoG
2a2s and radiation pressure

contributions Srp(ω) = γoG
2a2sF(ω)/(ω2+γ2

o/4), respec-
tively, with

F(ω) = Ω2|ωcχc(ω)|2|ωdχd(ω)|2
[

(

ω2 − ωcωd

)2
+γ2

mω2
]

,

(12)
where χc,d(ω) = (ω2

c,d − ω2 − iωγm)−1 are the sidemode
susceptibilities. The final term in Eq. (11)

Sth(ω) = γmω
[

ωc|χc(ω)|2 + ωd|χd(ω)|2
]

coth

(

~ω

2kBT

)

,

(13)
is due to mechanical fluctuations.
Plotting S(ω) as a function of system response fre-

quency ω [Fig. 3(i)], we clearly see the peaks expected
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FIG. 3. Noise spectrum (i) S(ω) versus response frequency
ω/2π for Pin = 12.4 fW; the peaks at ωd/2π = 569 Hz and
ωc/2π = 695 Hz correspond to Lp = 1 and l = 10 (ii) S(ωopt)
versus input power Pin, where ωopt/2π = ωc/2π+0.3 Hz [see
inset of Fig. 4(i)]. The red (blue) straight dashed line with
a negative (positive) slope indicates optical shot (radiation

pressure) noise. Here, ∆′ = 0 and P SQL
in = 4.8 fW. The

remaining parameters are, in addition to T = 20 nK, the
same as in Fig. 2.

at ωc and ωd, respectively. We have confirmed that Lp

can be accurately extracted from these peaks, for various
sets of parameters, thus verifying our conjecture that the
cavity transmission indicates atomic rotation. We note
from Eqs. (7) and (8) that for (Lp, l) 6= 0, it follows that
ωc 6= ωd and therefore the coupling of the sidemodes to
the cavity photon number is unequal. This observation
underlies the slight peak asymmetry observed in Fig. 3(i).
Plotting S(ω) as a function of cavity drive power Pin

[Fig. 3(ii)] shows the existence of a standard quantum
limit where the combined effect of the shot noise and
radiation pressure noise is minimized for an optimum
power P SQL

in , as in standard cavity optomechanics [28].
We now characterize the rotation measurement sensi-

tivity quantitatively. In the regime of linear response it
is given by [55]

ζ =
S(ω)

∂S(ω)/∂Λ
×
√
tmeas, (14)

where t−1
meas ≃ 8(asG)2/γo is the optomechanical mea-

surement rate in the bad cavity limit (ωc,d ≪ γo) applica-
ble to our system [28]. The change in the sensitivity with
various parameters is shown in Fig. 4. The best sensitiv-
ity occurs at frequencies ωc and ωd, respectively, when
the sidemode mechanical susceptibilities peak [Fig. 4(i)];
also, the sensitivity improves with l as more optical lat-
tice sites interact with the BEC [Fig. 4(ii)].
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FIG. 4. Rotation sensitivity versus (i) response frequency
ω/2π and (ii) OAM number l. Here Pin = 12.4 fW and the
remaining parameters are the same as in Fig. 2 except in (ii)
ω = ωopt.

For realistic parameters we find that the best sensitiv-
ity of our method to the rotation of a BEC with respect
to a stationary laboratory is ∼ 10−3Hz/

√
Hz, three or-

ders of magnitude better than demonstrated thus far [25]
and comparable to theoretical proposals based on fully
destructive measurements [12]. Also, for our parameters,
the optomechanical measurement time tmeas ≃ 60 ms is
shorter than the orbital period of an atom (∼ 300 ms
for Lp = 1) around the ring trap, much shorter than the
duration of a persistent current (∼ seconds [2, 3], thus
making the measurement practically real time), and very
much shorter than the photon scattering time (∼ min-
utes). Finally, we note that our scheme for measuring
Lp only requires a few atoms to be removed from the
original persistent current mode - but not from the ring
trap - into the sidemodes, and is therefore minimally de-
structive [23].
Optomechanical entanglement.— To demonstrate that

our proposed platform enables not only passive measure-
ment but also active manipulation of persistent currents,
we now show that light can optomechanically entangle

4



the two rotating matter wave sidemodes. This could be
useful for rotating matter waves to serve as a memory
for OAM-carrying photons, which are of current inter-
est for the large Hilbert space they offer for quantum
information processing purposes [27, 56].
We use the experimentally accessible logarithmic

negativity EN = max[0,−ln(2σ−)] [28, 57], as a
measure of bipartite entanglement, where σ− =

2−1/2
[

Σ−
√

Σ2 − 4det(Vsub)
]1/2

,Σ = detA + detB −
2detC, and Vsub = ((A,C), (CT , B)) is the covariance
matrix provided in the SM [39]. Entanglement between
the two sidemodes turns on when optical interaction with
the matter waves, proportional to the number of lattice
maxima 2l, becomes frequent enough [Fig. 5(i)] and de-
grades with temperature [Fig. 5(ii)]. A systematic study
of the effect of atomic interactions on all results has been
provided in the SM [39].

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

FIG. 5. Bipartite entanglement between two sidemodes ver-
sus (i) OAM number l for T = 20 nK and (ii) temperature
T for l = 10. Except for ∆′ = ωc, and Pin = 0.4 fW, the
parameters are the same as in Fig. 2.

Conclusion.— We have proposed a method of measur-
ing the rotation of a ring BEC by coupling it to orbital
angular momentum-carrying beams inside an optical cav-
ity. For realistic parameters this method improves upon
currently available rotation sensitivities by three orders
of magnitude. Our proposal also advances the frontier
of optomechanics from the paradigm of light fields in-
teracting with mechanical vibrations to include coherent
atomic rotation, thus opening up the possibility of us-
ing rotating matter waves to realize applications such as
storage and retrieval of information. Future work will
consider more complex many-body states, vortex nucle-
ation and decay, and gauge fields.
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