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Here we introduce the concept of the twinning field – a driving electromagnetic pulse that induces
an identical optical response from two distinct materials. We show that for a large class of pairs of
generic many-body systems, a twinning field which renders the systems optically indistinguishable
exists. The conditions under which this field exists are derived, and this analysis is supplemented by
numerical calculations of twinning fields for both the 1D Fermi-Hubbard model, and tight-binding
models of graphene and hexagonal Boron Nitride. The existence of twinning fields may lead to new
research directions in non-linear optics, materials science, and quantum technologies.

Introduction:- As our understanding of the physical
world has progressed to mastery over it, it has become
apparent that the qualities which define a material at
equilibrium may be modified under driving. This phe-
nomenon underpins both quantum simulation [1] and
Floquet engineering [2–4]. One of the principal goals
of quantum control theory [5] is the specification of the
driving fields necessary either to steer a system to some
desired state [6–11], or fulfill a pre-specified condition on
its expectations [12, 13].

Using tracking quantum control [14–21], recent work
has demonstrated that almost arbitrary control over the
optical response of a large class of solid-state systems
can be achieved [22, 23]. One consequence of this is that
two specially tailored driving fields will induce an iden-
tical response from two distinct systems. Given the es-
sential malleability of quantum systems under driving,
one might ask whether it is possible to fulfil the stronger
condition of obtaining identical responses using the same
driving field on each system. Put differently, do there
exist fields for which a pair of systems’ response are in-
distinguishable?

Consider two distinct systems |ψ1〉 and |ψ2〉, with an
identical control field impinging on each of them (see Fig.
1). Each system will generate an optical response J (k)(t),
and if J (1)(t) = J (2)(t) for all times t, then the driving
field is what we term a ‘twinning field’, and the systems
are optically indistinguishable.

In the regime of linear response, this may initially ap-
pear trivial, as many systems possess extremely similar
absorption and emission spectra over a broad range of fre-
quencies (e.g., large organic molecules [24]). Indeed, such
is the closeness of these systems’ response that quantum
control [25–31] (including tracking control [32]) must be
exploited to accurately detect these systems. Of course,
similar is not identical, and purely linear response would
require identical susceptibilities for identical responses.
In general however, materials also have a non-linear com-
ponent to differentiate them (see, e.g., [33]). In fact many
important phenomena – e.g. high harmonic generation
[34–36], the workhorse of attosecond physics [37–39] –
explicitly rely on optical non-linearities [40].

For this reason, true optical indistinguishability must
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FIG. 1. Ordinarily, distinct systems will have different re-
sponses to the same driving field. A twinning field relates a
pair of systems as the field under which the optical response
J(k)(t) of each system is identical.

be considered in the context of the non-linear response
that arises in a fully quantum treatment of materials.
Some preliminary hints of this indistinguishability have
been observed experimentally, specifically in the non-
uniqueness of the parametrisation of second-order nonlin-
ear spectra [41]. To date however, a theoretical justifica-
tion for such results has been lacking. In this manuscript
we address this issue and present a framework for achiev-
ing driven indistinguishability. The main result is a
demonstration that for any pair of generic many-electron
systems on a lattice, there always exists a twinning field
which will elicit an identical response from each system.
Furthermore, the conditions under which this field is
unique are established. This framework is then extended
by deriving a general twinning field which renders an ar-
bitrary expectation identical between systems. Finally
we discuss the physical implications of twinning fields,
and their potential utility.

Results:- Here we outline the derivation of the twin-
ning field for 1D systems, while the more general case
is discussed in the supplementary material [42] which in-
cludes Refs. [43–45]. Here we consider two many-electron
systems on a lattice, labeled by k = 1, 2. Each has a po-
tential Û (k) due to electron-electron interactions. Both
systems are excited by an identical laser pulse, described
under the dipole approximation by the Peierls phase Φ(t)
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[46, 47]. Such systems’ evolution will then be determined
by the Hamiltonian (in atomic units) [23, 48]:

Ĥ(k)(t) = −t(k)
0

∑
j,σ

(
e−iΦ(t)ĉ†jσ ĉj+1σ + h.c.

)
+ Û (k),

(1)

where ĉjσ is the fermionic annhilation operator (acting
on the appropriate system) for site j and spin σ, satisfy-

ing the anticommutation relation {ĉ†jσ, ĉj′σ′} = δσσ′δjj′ ,

while t
(k)
0 is the hopping parameter describing the kinetic

energy of the electrons.
Consider a typical example of an optically driven cur-

rent. The current operator Ĵ (k) is defined from a conti-
nuity equation for the electron density [22, 23]. Provided

all number operators n̂jσ = ĉ†jσ ĉjσ commute with Û (k),
each system’s current operator has the form [49]:

Ĵ (k)(t) = −iat(k)
0

∑
j,σ

(
e−iΦ(t)ĉ†jσ ĉj+1σ − h.c.

)
, (2)

where a(k) is the lattice constant. It is impor-
tant to note that the current expectation J (k)(t) =
〈ψk(t)|Ĵ (k)(t)|ψk(t)〉 depends only implicitly on Û (k)

through the evolution of |ψk(t)〉, significantly simplify-
ing expressions.

Having dispensed with this preamble, we come to our
main topic of investigation. For two systems |ψ1〉 and
|ψ2〉 with potentials Û (1) and Û (2), does there exist a
twinning field Φτ (t) such that J (1)(t) = J (2)(t), making
the response of one system indistinguishable from the
other?

To establish the existence of this field, we first express
the nearest-neighbour expectation of each system in a
polar form

K̂ =
∑
j,σ

ĉ†jσ ĉj+1σ, (3)

K(ψk) =
〈
ψk(t)

∣∣∣K̂∣∣∣ψk(t)
〉

= R (ψk) eiθ(ψk). (4)

Note that in both this and later expressions, the argu-
ment ψk indicates that the expression is a functional of
|ψk〉 ≡ |ψk(t)〉. We emphasise that this functional will
have a well defined value for any state that has been ob-
tained through evolution under the Hamiltonian given in
Eq. (1). Using this, we may express the response expec-
tation J (k) directly as

J (k) (t) =− iat0R (ψk)
(

e−i[Φ(t)−θ(ψk)] − ei[Φ(t)−θ(ψk)]
)

=− 2at0R (ψk) sin(Φ (t)− θ (ψk)). (5)

It is straightforward to equate the currents J (1)(t) and
J (2)(t) and obtain an expression for the twinning field Φτ
in terms of the expectations of the two systems:

Φτ (t) = arctan (ξ(ψ1, ψ2)) (6)

ξ(ψ1, ψ2) =
λR(ψ1) sin(θ(ψ1))−R(ψ2) sin(θ(ψ2))

λR(ψ1) cos(θ(ψ1))−R(ψ2) cos(θ(ψ2))
, (7)

where λ =
a(1)t

(1)
0

a(2)t
(2)
0

. Critically, in this 1D case one is able

to obtain a closed form for Φτ (t), such that the existence
of this field can be assessed purely by considering its right
hand side. Given both the range and domain of arctan
extends over the reals and ξ(ψ1, ψ2) is real by definition
(and has a definite value for any pair of states), we can
immediately conclude that a twinning field between any
two systems described by Eq. (1) always exists.

An important caveat to this statement is that the pre-
dicted twinning field may be identically zero depending
on the initial states of the twinned systems. For example,
if we attempt to twin two systems of non-interacting elec-
trons (Û (k) = 0), then K̂ commutes with the Hamiltonian
and K(ψk) is constant. If the systems are evolved from
their ground state, θ(ψk) = 0, and by Eq. (6), Φτ (t) = 0.
This scenario is consistent with the impossibility of twin-
ning fields in linear optics, and can be avoided by having
at least one of the system pair have a non-zero poten-
tial and hence a nonlinear response. Furthermore, while
an equation for Φτ can still be obtained in higher di-
mensions, in general it will not be of a closed form, and
therefore a twinning field is not guaranteed to exist. The
additional requirements for a twinning field to exist in
this scenario are detailed in the supplementary material
[42].

Illustrations:- Here we provide examples of twinning
fields for systems described by the Fermi-Hubbard model
of strongly interacting electrons. In this case, each sys-
tem has an onsite potential described by [48, 49]:

Û (k) = U (k)
∑
j

ĉ†j↑ĉj↑ĉ
†
j↓ĉj↓ (8)

where U (k) parametrises the energy of the electron-
electron repulsion. Systems’ equilibrium properties are

determined by the ratio U (k)/t
(k)
0 . Despite the simplicity

of the potential, this model is rich in nontrivial behaviour,
including topological [50, 51] and superconducting phases
in 2D [52, 53]. The Fermi-Hubbard model is compu-
tationally challenging and a complete understanding of
its dynamics is believed to require a quantum computer
[54]. It also exhibits a highly non-linear optical response
[49, 55, 56], and therefore provides a suitable platform
for numerical calculations of twinning fields.

Here we consider an L = 10 site chain with periodic
boundary conditions and an average of one electron per
site. For the sake of simplicity, in both systems we use
the lattice constants a(1) = a(2) = 4 Å, with a hopping

parameter of t0 ≡ t
(1)
0 = t

(2)
0 = 0.52 eV. To avoid the

trivial solution of Φτ (t) = 0, each system (initially in
the ground state) is first pumped by a single cycle of a
transform-limited field. Specifically, an enveloped sine-
wave is used with an amplitude of E0 = 10 MV/cm
and frequency ω0 = 32.9 THz. All calculations were
performed using exact diagonalization via the QuSpin
Python package [57, 58].
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FIG. 2. Top panel: twinning fields and the accompanying
optical response for three pairs of systems, following an initial
pump pulse. Bottom panel: The current resulting from the
application of the twinning field, which is identical in each pair
of systems. In all cases U (1) = 0.5t0, while U (2) = U (1) + ∆,
where ∆ is varied for each of the three pairs. a′.u. are atomic
units with energy normalised to t0.

Figure 2 shows examples of calculated twinning fields
and the accompanying responses they generate for several
pairs of systems. These pairs are parametrised by ∆,
using U (1) = 0.5t0, while U (2) = U (1) + ∆. Applying
the twinning field calculated at each time, we find the
current in each pair of systems is identical, as expected.

A more concretely physical example is to twin two
commonly studied materials - graphene and hexagonal
Boron Nitride (hBN). Both of these structures have a bi-
partite lattice structure, as shown in Fig.3. Critically,
that lattice constant for both systems is almost identi-
cal, and can hence be modelled with the identical value∣∣∣a(gr)
j

∣∣∣ =
∣∣∣a(hBN)
j

∣∣∣ = 2.5Å [59, 60]. This is critical for the

existence of a twinning field, as in higher dimensions the
ability to twin a pair of systems can only be guaranteed
when they share the same lattice structure.

Both materials are well modelled by the tight-binding
approximation [61], with an onsite potential of the same

form as Eq. (8). t
(gr)
0 = t

(hBN)
0 = 2.7eV, and for

the graphene carbon atoms Uc = 0, while for hBN
UB = 3.3eV and UN = −1.4eV for Boron and Nitrogen
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FIG. 3. Both graphene and hBN can be modelled with the
tight-binding approximation set on a hexagonal bipartite lat-
tice, defined by the positions of the B sublattice atoms relative
to those on the A sublattice. These are characterised by the
three nearest neighbour vectors aj , with each being having an
angular separation of 120◦, and length 2.5Å

atoms respectively [62, 63]. While it is possible to also
include next-to-nearest hopping, the relative strength of
this compared to nearest-neighbour hopping is only ∼ 5%
[64, 65], and we therefore neglect it for calculational sim-
plicity. Further information on both the precise Hamilto-
nian describing these systems, and the derived twinning
field equations may be found in the supplementary infor-
mation [42].

Simulations are performed using L = 12 sites with pe-
riodic boundaries, and the systems are again prepared
via the application of a pumping field. In this case, the
polarisation of this initial pump is of great consequence,
and in order to generate a physically realisable twinning
field, it must be aligned with one of the nearest neigh-
bour vectors. Fig. 4 shows an example of this, with the
initial pump pulse and subsequent twinning field aligned
along the a1 direction.

Discussion:- We have introduced a non-linear optical
phenomenon where some pairs of quantum systems have
a twinning field which generates an identical response in
each individual system. In 1D the necessary conditions
for a twinning field to exist are rather general, but in
higher dimensions the two systems must possess a high
degree of similarity in their lattice structures for the ex-
istence of a twinning field to be guaranteed. Conditions
for the uniqueness of this field were derived, and numer-
ical calculations provided examples of twinning fields in
a Fermi-Hubbard system.

It is instructive to compare optical indistinguishability
with the anti-haecceitism [66, 67] of quantum particles.
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FIG. 4. Top panel: Twinning field generated after a pump
pulse in the a1/x direction. The symmetry of the lattice guar-
antees that the resultant twinning field is also purely in the x
direction. Bottom panel: the overall current J(t) in the x di-
rection due to application of the twinning field. As expected,
this is identical in both systems.

The latter is responsible for both the Fermi-Dirac and
Bose-Einstein distributions [68, 69] (as well as the reso-
lution of Gibbs’ paradox [70, 71]), and is an intrinsic and
immutable property of said particles. For this reason it
has been commonly assumed that systems governed by
distinct Hamiltonians will be distinguishable from each
other. Indeed, the effectiveness of spectroscopy is predi-
cated on the notion that a material can be uniquely iden-
tified from its spectral response [72]. The existence of
twinning fields gives the lie to this assumption however,
demonstrating that indistinguishability can arise as an
emergent property under driving.

It may be tempting to think of twinning fields purely
as an act of deception, where an unscrupulous salesman
could use the technique to pass off a cheap and nasty
material as something more costly. In fact, the analy-
sis presented here demonstrates that it is a trick requir-
ing highly specific conditions to be repeated, and such a
fraud can be defeated by an arbitrary modification to the
example driving field. Indeed, even if the twinning field
is non-unique, the field up to the point that Lipschitz

continuity (see [42]) is violated will be unique. Any field
that is distinct from this initial trajectory will therefore
be guaranteed to produce a response distinguishing the
two systems. This has the important consequence of en-
suring that techniques designed to discriminate between
similar systems are well founded [27, 28, 32].

Of course, the existence of twinning fields forces one
to consider both their feasibility and wider utility. While
the twinning fields calculated here appear to be rather
broadband pulses, the rapid improvement in both inten-
sity and bandwidth of laboratory laser sources [73, 74]
– combined with the fact that similarly tailored tracking
control fields can be well approximated by a few distinct
frequencies [23] – suggests twinning fields may be experi-
mentally realisable with current technology. In fact, deep
learning networks have recently been employed to experi-
mentally determine the driving field required to generate
a desired response in a material, in a manner that is ro-
bust to noise [75]. It is likely that such techniques could
be similarly applied for the practical calculation of twin-
ning fields.

One potential application of these fields is to charac-
terise the effect of interactions between systems. Ap-
plying the twinning field calculated for a non-interacting
pair, it would be possible to identify the additional cur-
rent generated by each system due to its interaction with
the other. Twinning fields may also provide a method
for creating alternative realisations of metamaterials [76]
when a specific response is required. Given a field and
a metamaterial’s nearest-neighbour expectation, Eq. (6)
can be used to calculate the properties of a different ma-
terial producing the same effect. Consequently the search
for cheaper alternative components in quantum technolo-
gies may be aided by twinning fields.

Naturally, there remain a number of unanswered ques-
tions. For instance, a given twinning field relates a pair
of systems, but is this pair unique? Put differently, are
there triplets, or n-tuplets of systems which exhibit opti-
cal indistinguishability? In the case of a non-unique twin-
ning field, what are the physical consequences of choosing
one solution over an another? Such questions may merit
further investigation, as understanding these secondary
properties provides both challenges and opportunities to
illuminate the principles upon which driven systems op-
erate.
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W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy,
S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K.
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