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Active control of quantum systems enables diverse applications ranging from quantum compu-
tation to manipulation of molecular processes. Maximum speeds and related bounds have been
identified from uncertainty principles and related inequalities, but such bounds utilize only coarse
system information, and loosen significantly in the presence of constraints and complex interaction
dynamics. We show that an integral-equation-based formulation of conservation laws in quantum
dynamics leads to a systematic framework for identifying fundamental limits to any quantum con-
trol scenario. We demonstrate the utility of our bounds in three scenarios—three-level driving,
decoherence suppression, and maximum-fidelity gate implementations—and show that in each case
our bounds are tight or nearly so. Global bounds complement local-optimization-based designs,
illuminating performance levels that may be possible as well as those that cannot be surpassed.

In this Letter, we develop a framework for comput-
ing fundamental limits to what is possible via control of
quantum systems. We show that quantum control prob-
lems can be transformed to quadratically constrained
quadratic programs (QCQPs), with generalized probabil-
ity conservation laws as the constraints, adapting a math-
ematical approach recently developed for light–matter in-
teractions [1, 2]. The QCQP formulation enables global
bounds via relaxations to semidefinite programs [3, 4].
We demonstrate the power and utility of our method
on three prototype systems: (1) three-level system driv-
ing, where our bounds incorporate sophisticated informa-
tion about interference between levels, and can account
for constraints on undesirable transitions (as needed in
transmons [5], for example), (2) upper bounds to the
suppression of decoherence, and (3) the maximum fi-
delity of a control-based implementation of a single-qubit
Hadamard gate. In each case we supplement our bounds
with many local-optimization-based solutions, showing
that they come quite close to (and in some cases achieve)
our bounds, suggesting that our bounds are tight or
nearly so. Our framework applies to open and closed sys-
tems, can be extended to related domains in NMR [6–8]
and quantum complexity [9–11], and should reveal the
limits of what is possible with quantum control.

Quantum control [12–16] refers to the design and syn-
thesis of efficient control sequences that drive a quantum
system to maximize a desired objective, such as maxi-
mizing overlap with a target state or minimizing error
in the implementation of a gate operation. Recent ex-
periments have demonstrated the power of optimal con-
trol for wide-ranging applications [17–22]. Because the
wave function |ψ(t)〉 that represents a quantum state
is nonlinear in the control parameter ε(t), it is generi-
cally difficult to identify globally optimal controls. One
strategy is to use local numerical optimization over the
control parameters (e.g. GRAPE [6, 23–25], the Krotov
method [26–31], and CRAB [32, 33]), optimizing over
many initial conditions in the hopes of identifying high-
performance local optima. Yet, except in the simplest of

systems, one is left uncertain about the best performance
possible. Alternatively, there are a variety of global
bounds [34–55]; most famously, the Mandelstam–Tamm
(MT) bound. The MT bound is a prototype of “quan-
tum speed limits,” which more generally have varying
levels of complexity but are essentially time-energy un-
certainty relations [34–37, 40, 44, 45, 52–56]. The energy
measure is typically a matrix norm of the Hamiltonian,
but more complex details of the system interactions are
not captured. Another class of bounds is obtained by an-
alytically solving Pontryagin’s maximum principle [57],
which is only possible in simple cases such as two-level
systems [38, 39, 42, 43, 46–48]. Consequently, meaning-
ful, accurate bounds cannot be computed for most quan-
tum control systems of interest.
Formulation—We consider a Hamiltonian of the form

H0(t) +H ′c(t) = H0(t) + ε(t)Hc(t), where H0 is the non-
controllable part of the Hamiltonian, H ′c is the control-
lable part, and ε is the control parameter to be optimized.
We assume the control parameter is bounded between 0
and εmax (any other minimum value can be shifted to 0
by replacing H0 with H0 + εminHc). Our method gener-
alizes to any number of control parameters (cf. SM [58]),
but for simplicity we assume one throughout this paper.
Any smooth, continuous, bounded control can be ap-
proximated with arbitrary accuracy by a “bang–bang”
binary control that only takes the values 0 and εmax (cf.
SM [58]), so we use bang–bang controls in our formula-
tion. Instead of the differential Schrödinger equation for
the time-evolution operator U(t, t0) (for an initial time
t0), we instead start with an integral form (equivalent to
the Dyson equation [59, 60] in the interaction picture):

U(t, t0) = U0(t, t0)− i

~

ˆ T

t0

G+
0 (t, t′)H ′c(t

′)U(t′, t0) dt′,

(1)

where U0 and G+
0 are the time-evolution operator and

retarded Green’s function in the absence of controls (i.e.,
for H0(t)), and T is the final time. To derive conserva-
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tion laws, we start by taking the product of Eq. (1) with
U†(t, t0)H ′c(t)Di(t) from the left and integrating from an
initial time t0 to T :
ˆ T

t0

U†(t, t0)H ′c(t)Di(t)U(t, t0) dt

+
i

~

ˆ T

t0

ˆ T

t0

U†(t, t0)H ′c(t)Di(t)G
+
0 (t, t′)H ′c(t

′)U(t′, t0) dtdt′

=

ˆ T

t0

U†(t, t0)H ′c(t)Di(t)U0(t, t0) dt. (2)

The variable Di(t) can be any time-dependent operator
and is an optimization hyperparameter below in Eq. (5);
intuitively, allowing different possible choices of Di en-
ables the isolation of particular times and elements in
Hilbert space for which Eq. (2) should be satisfied. The
variable Hc is effectively a renormalization that simpli-
fies the probabilistic interpretation below; equivalently,
it can be omitted. The constraint of Eq. (2) depends on
both the time-evolution degrees of freedom U(t) and the
control variable degrees of freedom ε(t). However, if we
define a new variable Φ(t) = ε(t)Hc(t)U(t, t0), this vari-
able (the analog of a polarization field in electrodynam-
ics [1, 61]) can subsume both. Crucially, we can replace
any instance of ε(t) with εmax. This can be thought of as
a two-step simplification: one could restrict the domains
of the integrals to only times in which the control is on,
in which case such a replacement is trivial. Next, ε(t)
only appears in a term of the form Φ†ε−1Φ, which is zero
even when ε(t) = 0, due to the quadratic dependence on
Φ. Hence we can extend the domain of the integrals back
to the entire time interval from t0 to T . Such “domain-
obliviousness” [1] arises from our inclusion of ε(t) and
U†(t, t0) in the product term. Finally, we have the con-
straints:ˆ T

t0

ˆ T

t0

Φ†(t)Di(t)

[
H−1
c (t)

εmax
δ(t− t′)+

i

~
G+

0 (t, t′)

]
Φ(t′)dtdt′

=

ˆ T

t0

Φ†(t)Di(t)U0(t, t0) dt, (3)

where H−1
c is taken to be the pseudo inverse if Hc is not

invertible. For any Di(t), Eq. (3) is a quadratic equation
in the variable Φ(t); the set of all possible Di(t) imply
an infinite number of quadratic constraints.

Equation (3) can be interpreted as a generalization of
probability conservation. At any time t1, conservation of
probability implies unitarity of the time-evolution opera-
tor U(t1, t0), such that U†U = I, where I is the identity
operator. From the integral equation for U , Eq. (1), the
difference U†U − I can be written

U†(t1, t0)U(t1, t0)− I

=
1

~2

ˆ t1

t0

ˆ t1

t0

Φ†(t′′, t0)U0(t′′, t′)Φ(t′, t0) dt′ dt′′

+
2

~
Im

ˆ t1

t0

U0(t0, t
′)Φ(t′, t0) dt′. (4)

If we take the imaginary part of Eq. (3), and choose Di(t)
to be the identity operator from t0 to t1 (and zero oth-
erwise), the resulting constraint is precisely the one that
requires the right-hand side of Eq. (4) to be zero (cf.
SM [58]). In other words, a subset of the constraints
of Eq. (3) are those which enforce unitary evolution at
all times. (In an open system described by a density
matrix, unitarity is not preserved and the corresponding
constraints instead represent conservation of probability
flow, cf. SM [58].)

Although our derivation implies only that the conser-
vation laws of Eq. (3) are necessary conditions for de-
scribing quantum evolution, one can show that they are
sufficient as well: any Φ(t) that satisfies all possible ver-
sions of Eq. (3) implies a corresponding time-evolution
operator U(t, t0) that satisfies Eq. (1) (cf. SM [58]).
Hence, we can replace the differential or integral dynam-
ical equations with the conservation-law constraints of
Eq. (3). The optimal-control problem, for any objec-
tive f that is a linear or quadratic function of the time-
evolution operator U , and therefore a linear or quadratic
function of Φ = εHcU , is then the QCQP:

max.
Φ

f(Φ)

s.t. Equation (3) satisfied for all Di(t).
(5)

We assume the problem has been discretized in any stan-
dard basis [62]. If we denote Φ to be a single col-
umn vector containing the full discretization of Φ(t),
Eq. (5) is a maximization of an objective of the form
Φ†AΦ+Re(α†Φ), where A is Hermitian, subject to con-

straints of the form Φ†BiΦ + Re(β†iΦ) = 0 for all i.
QCQPs are generically NP-hard to solve, but bounds on
their solutions can be computed efficiently after semidef-
inite relaxation (SDR). SDRs transform quadratic forms
Φ†AΦ to equivalent linear forms Tr{AX}, where X is
a rank-one positive semidefinite matrix, then drop the
rank-one constraint. Finally, we are left with an objec-
tive of the form Tr{AX}+ Re(α†Φ) subject to the con-

straints that Tr{BiX}+Re(β†iΦ) = 0 for all i and X � 0,
which is a semidefinite program whose global optimum
can be computed via interior-point methods [4, 63]. As
the bounds are computed over all possible matrices Di,
we label them “D-matrix bounds.” This framework ap-
plies broadly across quantum control; next, we demon-
strate bounds for three prototypical systems.
Applications—First, we compute bounds on driv-

ing three-level quantum systems. We consider two
three-level systems described by Hamiltonians H =
~
∑
i=1,2 ωj |i〉〈i| − ε(t)

∑
i,j=0,1,2 µij |i〉〈j|: one modeling

an asymmetric double-well potential, with exact param-
eters from Sec. 2.8 of Ref. [13] and given in the SM [58],
and a second modeling a weakly nonlinear harmonic os-
cillator with nearest-level couplings, as is typically used
to model a transmon qubit [5, 64]. (We consider both sys-
tems as they have different features: the first, couplings
between all levels, and the second, small anharmonicity
with hard-to-avoid leakage.) In each case we assume the
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FIG. 1: (a) Bounds on the maximum probability in state |1〉 as a function of time (solid black) for an asymmetric
double-well potential, with shading above to indicate impossible values. Grey lines represent pulse evolutions
optimized by gradient ascent, with the red line the very best evolution for final time 30. Inset: evolution of
probabilities in states |0〉 , |1〉 , |2〉 for the optimal control, showing the complex dynamics captured by the bound.
Black diamonds: evaluations of bounds of Mandelstam–Tamm, Margolus–Levitin, and Refs. [54, 55] for this
problem. (b,c) Analogous to (a) but for a three-level model of a transmon qubit. (d) Incorporation of an additional
constraint requiring small maximum allowable excitation probabilities of state 2. The bound on the maximum
state-|1〉 probability (at time 5) decreases accordingly. The time to achieve 99% state-|1〉 probability increases
substantially with smaller allowed leakage rates.

system starts in the ground state, |0〉, and that we want
to drive it to the first excited state, |1〉, as rapidly as
possible. We denote the probability of occupying state i
at time t by Pi(t) = |〈i|ψ(t)〉|2. There are two classes of
bounds that we can compute: for a given amount of time
T , the maximum probability in |1〉, P1(t); or, iteratively,
the minimum amount of time to achieve near-unity prob-
ability in |1〉.

The black curve of Fig. 1(a) is the computed bound
on P1(t) for the asymmetric-double-well model, for a
bounded control field with |ε(t)| ≤ 0.15. The shaded
region of the figure is impossible to reach: our bounds
indicate that any such evolution would necessarily vio-
late at least one of the conservation laws. The grey lines
are the results of local computational optimizations; we
implemented a gradient-ascent optimization (similar to
GRAPE) as described in the SM [58], for many different
final times and initial pulse sequences. The gap between
the local optimizations and the bounds arises from two
sources—looseness in the bounds (from the SDR) or in-
sufficient local exploration of the optimal pulses—though
it is hard to pinpoint which source is more responsible.
Also included in the figure are data points corresponding
to evaluations of other bounds as applied to this problem:
Mandelstam–Tamm (MT), Margolus–Levitin (ML), and
Refs. [54, 55]. It takes some effort to map the various
bounds to this problem, with varying degrees of loose-
ness, which we discuss in detail in the SM [58]. In par-
ticular, however, one can see that each of these bounds
predicts minimal times an order of magnitude smaller
than our approach. The inset provides a likely expla-
nation: the optimal trajectory (highlighted in red) first

populates the second excited state, then transitions to
the first excited state through appropriate driving. Such
complex dynamics cannot be captured by any previous
bound approaches, but can be captured by our approach.

Parts (b–d) of Fig. 1 show results for the transmon-
qubit model, with ω1 = 0.19, ω2 = 0.37, µ10 = µ01 = −1,
µ21 = µ12 = −

√
2 (all other µij = 0), and |ε(t)| ≤ 0.3.

Fig. 1(b,c) are the transmon analogs of Fig. 1(a). The
key novelty that is possible in this case is the addition of
a constraint on the excitation probability of the second
excited state, |2〉. Such “leakage” can be highly detri-
mental to the practical control of such systems, as they
can open up additional decoherence channels [65]. In our
approach, we can simply add to Eq. (5) a (quadratic)
constraint on the maximum allowed probability in |2〉. In
Fig. 1(d), we show the bound for maximum P1(t) subject
to varying constraints on the maximum allowed P2(t), at
time t = 5, which shows the dramatic reduction that is
required if state-|2〉 transitions are to be avoided. Con-
versely, also in Fig. 1(d), the minimum time for near-
unity first-state probability increases dramatically with
more stringent constraints (red). Such constraints could
not be incorporated into previous bound approaches.

A second example we consider is the extent to which
one can prevent decoherence and dissipation due to in-
teractions with the environment. The design of pulses to
achieve such a goal has been studied extensively through
semi-heuristic “dynamic decoupling” design schemes [66–
69], which may not be (and in many cases are not) glob-
ally optimal. A typical model of environmental effects
is a spin system interacting with a spin bath. We con-
sider a spin-bath system [70] with Hamiltonian H0 =
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FIG. 2: For a spin system interacting with a spin bath,
the D-matrix approach enables bounds on maximum
possible coherence as a function of time. The black
solid line bounds the magnitude of the off-diagonal
element of the system density matrix,
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∣∣, for varying
maximum control amplitudes εmax. The time evolutions
of
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∣∣ for pulses designed by gradient-ascent (solid
grey) and finite Carr-Purcell (black dash lines) methods
can closely approach the bounds.

HS+HE+Hint, whereHS is the system Hamiltonian (two
levels split by energy ~ω0), HE is the Hamiltonian of the

environmental bath (HE = −J
∑N
j=1

(
σxj σ

x
j+1 + λσzj

)
),

and Hint is the interaction between the system and the
bath, Hint = −ν |↓〉 〈↓| ⊗

∑
j σ

z
j , with ω0 = π, J = 1, λ =

0.5, and ν = 2 here. The control Hamiltonian here is
Hc = ε(t)σx on the system only. Rather than use an
approximation to the environmental coupling [71], we
model the full dynamics of the wave function |ψ(t)〉. As
a result, we only use a bath of size N = 2. Despite the
bath being unrealistically small, it provide a qualitatively
accurate description of the decoherence process [72] and
serves as a proof of principle. The system initial state is
1√
2
|↑〉+ 1√

2
|↓〉, while the spin bath is in its ground state.

The system density matrix ρS is found by tracing out the
bath part of the full density matrix, ρ(t) = |ψ(t)〉〈ψ(t)|.
The objective is to maximize |ρS12|, the magnitude of the
off diagonal elements of ρS , which represents the coher-
ence of the system state. Instead of working with the
absolute value (or its square, which is quartic in |ψ〉),
we equivalently maximize f = Re

(
ρS12e

iφ
)

for a given
φ, and then iterate over possible values of φ between 0
and 2π. Fig. 2 shows the bounds on maximal coher-
ence as a function of time for three different bounded

controls: εmax = 0.5, 1 and 2. Also included are actual
evolutions for three cases: without control, with a pulse
designed by gradient ascent, and pulses designed by a
bounded-control version of dynamical decoupling termed
“Eulerian Carr-Purcell” [73]. It is possible with strong
controls to increase coherence at short times (as is partic-
ularly visible in Fig. 2(c)), but that would not be possible
over longer time scales. We see that the bounds appear
nearly tight, and provide information about what levels
of coherence are possible as a function of time.

For the third application, we consider the implemen-
tation of a single-qubit Hadamard gate. For a two-
level system with Hamiltonian H = ~ω0σz − µε(t)σx
(ω0 = 0.0784, µ = 1) [13], the target time-evolution

operator is given by 1√
2

(
1 1
−1 1

)
. The objective is to

compute the maximal fidelity of a quantum gate at time
T ; for computational purposes, it is easier to work with

the square of fidelity, f2 = 1
4

∣∣∣Tr
{
U†tarU(T )

}∣∣∣2. Identi-

fying when the bound approaches 1 then indicates the
minimum possible time to perform a gate operation. We
consider a bounded control with εmax = 1. A crucial dif-
ference in the gate problem is that multiple inputs map
to multiple outputs; the off-diagonal elements of the D
matrices in Eq. (3) inherently enforce the correspond-
ing orthogonal-evolution requirement. Fig. 3 shows the
fidelity bound as a function of time (solid black), along
with time evolutions for locally optimized pulse sequences
in the colored lines (optimized for different end times).
The bound is tight, or very nearly so, across all times.
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FIG. 3: The black solid line bounds the maximum
fidelity of a single-qubit Hadamard gate implemented in
a two-level system with H = ~ω0σz − µε(t)σx, and
maximum control amplitude εmax = 1. Pulses optimized
for different final times (colored lines) can achieve the
upper bounds at all times.

Conclusions—Quadratic constraints representing gen-
eralized probability-conservation laws offer a framework
for quantum control bounds. We have shown that this
method can be significantly tighter than previous bounds



5

and more widely applicable. There are further exten-
sions that may be possible as well: in nanophotonic de-
sign problems, a hierarchy of bounds with varying ana-
lytical and semi-analytical complexity have been discov-
ered as subsets of the D-matrix constraints [1, 2, 74–
85]; the same may be possible in quantum control. In
particular, environment-induced decoherence and dissi-
pation are similar to material-absorption losses in elec-
tromagnetism, and may be amenable to general analyt-
ical bounds [74, 78]. From an algorithmic perspective,
there are significant computational speed-ups that should
make the bound computations competitive with local op-
timizations, as a function of the number of degrees of
freedom of the system, N (the product of time steps
and Hilbert-space dimensionality). Global optimization
is presumably NP-hard; local optimizations require O(N)
time for each iteration and a number of iterations that
may be large but independent of N . To find good local

optima, however, requires restarting the search a num-
ber of times proportional to the number of local optima,
which should scale at least as O(N), for a total scal-
ing of at least O(N2) (which is likely optimistic). For
the bound computations, the simple implementation used
for this work, using all possible constraints and interior-
point-methods oblivious to the structure of the problem,
scales as O(N4.5) [86]. Clever selection of the constraint
matrices [1] can reduce the scaling to O(N3.5), while ex-
ploitation of the integral-operator’s structure (e.g. via
fast-multipole-type methods [87, 88]) should further im-
prove the scaling to O(N2.5), making it highly compet-
itive with local design methods. More broadly, our ap-
proach and extensions thereof can be applied to prob-
lems across the quantum-control landscape, ranging from
speed limits and gate fidelity to areas like NMR [6–8] and
quantum complexity [9–11].
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[21] A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Supera-
diabatic population transfer in a three-level supercon-
ducting circuit, Sci. Adv. 5, eaau5999 (2019).

https://doi.org/10.1103/PhysRevLett.125.263607
https://arxiv.org/abs/2008.13325
http://arxiv.org/abs/2008.08168
https://arxiv.org/abs/2008.08168
https://doi.org/10.1016/S0927-0507(05)12008-8
https://doi.org/10.1016/S0927-0507(05)12008-8
https://doi.org/10.1109/MSP.2010.936019
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1002/9780470034590.emrstm1043
https://doi.org/10.1103/PhysRevA.73.062323
https://arxiv.org/abs/0603160
https://doi.org/10.1007/JHEP10(2017)107
https://doi.org/10.1007/JHEP10(2017)107
https://doi.org/10.1103/PhysRevLett.120.121602
https://doi.org/10.1103/PhysRevLett.120.121602
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1088/0953-4075/40/18/R01
https://arxiv.org/abs/0707.1883
https://doi.org/10.1088/1367-2630/12/7/075008
https://arxiv.org/abs/0912.5121
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1038/nphys2170
https://doi.org/10.1038/nphys2170
https://arxiv.org/abs/1111.1579
https://doi.org/10.1038/srep34187
https://arxiv.org/abs/1511.02247
https://doi.org/10.1038/s41467-017-00045-1
https://arxiv.org/abs/1608.02430
https://doi.org/10.1103/PhysRevLett.122.013204
https://doi.org/10.1103/PhysRevLett.122.013204
https://arxiv.org/abs/1809.04543
https://doi.org/10.1126/sciadv.aau5999


6

[22] M. R. Lam, N. Peter, T. Groh, W. Alt, C. Robens,
D. Meschede, A. Negretti, S. Montangero, T. Calarco,
and A. Alberti, Demonstration of Quantum Brachis-
tochrones between Distant States of an Atom, Phys. Rev.
X 11, 11035 (2021), arXiv:2009.02231.

[23] P. De Fouquieres, S. G. Schirmer, S. J. Glaser, and
I. Kuprov, Second order gradient ascent pulse engineer-
ing, J. Magn. Reson. 212, 412 (2011).

[24] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Nayde-
nov, S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann,
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