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We propose a tomographic protocol for estimating any k-body reduced density matrix (k-RDM) of
an n-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-
body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a
randomized approach to learning a collection of quantum-state properties, to the fermionic setting.
Our sampling protocol uses randomized measurement settings generated by a discrete group of
fermionic Gaussian unitaries, implementable with linear-depth circuits. We prove that estimating
all k-RDM elements to additive precision ε requires on the order of

(
n
k

)
k3/2 log(n)/ε2 repeated state

preparations, which is optimal up to the logarithmic factor. Furthermore, numerical calculations
show that our protocol offers a substantial improvement in constant overheads for k ≥ 2, as compared
to prior deterministic strategies. We also adapt our method to particle-number symmetry, wherein
the additional circuit depth may be halved at the cost of roughly 2–5 times more repetitions.

Introduction.—One of the most promising applications
of quantum computation is the study of strongly corre-
lated systems such as interacting fermions. While quan-
tum algorithms such as phase estimation [1, 2] allow
for directly computing important quantities like ground-
state energies with quantum speedup [3–5], current hard-
ware limitations [6] have directed much attention toward
variational methods. Of note is the variational quan-
tum eigensolver (VQE) [7, 8], where short-depth quan-
tum circuits are repeatedly executed in order to estimate
observable expectation values.

Initial bounds on the number of these circuit repe-
titions associated with fermionic two-body Hamiltoni-
ans were prohibitively high [9], spurring on much recent
work addressing this problem. We roughly classify these
strategies into two categories: those which specifically
target energy estimates [8, 10–29], referred to as Hamil-
tonian averaging, and more general techniques which can
learn the k-body reduced density matrices (k-RDMs) of a
quantum state [30–44]. (Not all works fit neatly into this
dichotomy, e.g., Refs. [45–50].) Hamiltonian averaging is
ultimately interested in a single observable, allowing for
heavy exploitation in its structure. In contrast, recon-
structing an RDM requires estimating all the observables
which parametrize it.

Though generally more expensive than Hamiltonian
averaging, calculating the k-RDM allows one to de-
termine the expectation value of any k-body observ-
able [51]. For example, the electronic energy of chem-
ical systems is a linear functional of the 2-RDM, while
in condensed-matter systems, effective models for elec-
trons can require knowledge of the 3-RDM [52, 53]. Be-
yond the energy, other important physical properties in-
clude pair-correlation functions and various order pa-
rameters [54, 55]. The 2-RDM is also required for a
host of error-mitigation techniques for near-term quan-
tum algorithms [13, 56, 57], which have been experimen-

tally demonstrated to be crucial in obtaining accurate
results [58–61]. Additionally, promising extensions to
VQE such as adaptive ansatz construction [62–65] and
multireference- and excited-state calculations [56, 57, 66–
69] can require up to the 4-RDM.
Motivated by these considerations, in this work we fo-

cus on partial tomography for fermionic RDMs. While
numerous works have demonstrated essentially optimal
sample complexity for estimating qubit RDMs [36, 37,
40–42], such approaches necessarily underperform in the
fermionic setting. Recognizing this fundamental distinc-
tion, Bonet-Monroig et al. [37] and Jiang et al. [40] devel-
oped measurement schemes which achieve optimal scal-
ing for fermions. However, the former construction is not
readily generalizable for k > 2, while the latter requires
a doubling in the number of qubits and a specific choice
of fermion-to-qubit mapping.
In this Letter, we propose a randomized scheme which

is free from these obstacles. It is based on the theory of
classical shadows [42]: a protocol of randomly distributed
measurements from which one acquires a partial clas-
sical representation of an unknown quantum state (its
“shadow”). Classical shadows are sufficient for learning
a limited collection of observables, making this frame-
work ideal for partial state tomography. Our key results
identify efficient choices for the ensemble of random mea-
surements, suitable for the structure of fermionic RDMs.
Fermionic RDMs.—Consider a fixed-particle state ρ

represented in second quantization on n fermion modes.
The k-RDM of ρ, obtained by tracing out all but k par-
ticles, is typically represented as a 2k-index tensor,

kDp1···pk
q1···qk

:= tr(a†p1
· · · a†pk

aqk
· · · aq1ρ), (1)

where a†p, ap are fermionic creation and annihilation op-
erators, p ∈ {0, . . . , n − 1}. By linearity, these matrix
elements may be equivalently expressed using Majorana
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operators, starting with the definitions

γ2p := ap + a†p, γ2p+1 := −i(ap − a†p). (2)

Then for each 2k-combination µ ≡ (µ1, . . . , µ2k), where
0 ≤ µ1 < · · · < µ2k ≤ 2n − 1, we define a 2k-degree
Majorana operator

Γµ := (−i)k γµ1 · · · γµ2k
. (3)

All unique 2k-degree Majorana operators are indexed by
the set of all 2k-combinations of {0, . . . , 2n−1}, which we
shall denote by C2n,2k. Since Majorana operators possess
the same algebraic properties as Pauli operators (Hermi-
tian, self-inverse, and Hilbert–Schmidt orthogonal), any
fermion-to-qubit encoding maps between the two in a
one-to-one correspondence.

The commutativity structure inherited onto C2n,2k
constrains the maximum number of mutually commut-
ing (hence simultaneously measurable) operators to be
O(nk) [37]. As there are O(n2k) independent k-RDM
elements, this implies an optimal scaling of O(nk) mea-
surement settings to account for all matrix elements.
Classical shadows and randomized measurements.—

We briefly review the framework of classical shadows in-
troduced by Huang et al. [42], upon which we build our
fermionic extension and prove sampling bounds. Let ρ be
an n-qubit state and {O1, . . . , OL} a set of L traceless ob-
servables for which we wish to learn tr(O1ρ), . . . , tr(OLρ).
Classical shadows require a simple measurement primi-
tive: for each preparation of ρ, apply the unitary map
ρ 7→ UρU†, where U is randomly drawn from some en-
semble U ; then perform a projective measurement in the
computational basis, {|z〉 | z ∈ {0, 1}n}.
Suppose we have an efficient classical representation

for inverting the unitary map on postmeasurement states,
yielding U†|z〉〈z|U . Then the process of repeatedly ap-
plying the measurement primitive and classically invert-
ing the unitary may be viewed, in expectation, as the
quantum channel

MU (ρ) := EU∼U,|z〉∼UρU†
[
U†|z〉〈z|U

]
, (4)

where |z〉 ∼ UρU† is defined by the usual probability dis-
tribution from Born’s rule, Pr[|z〉 | UρU†] = 〈z|UρU†|z〉.
Informational completeness of U ensures that this chan-
nel is invertible, which allows us to define the classical
shadow

ρ̂U,z :=M−1
U
(
U†|z〉〈z|U

)
(5)

associated with the particular copy of ρ for which U was
applied and |z〉 was obtained. Classical shadows form
an unbiased estimator for ρ, and so they can be used to
estimate the expectation value of any observable O:

EU∼U,|z〉∼UρU† [tr(Oρ̂U,z)] = tr(Oρ). (6)

The number of repetitions M required to obtain an
accurate estimate for each tr(Ojρ) is controlled by the
estimator’s variance, which may be upper bounded by

max
states σ

E U∼U
|z〉∼UσU†

[
〈z|UM−1

U (Oj)U†|z〉2
]

=: ‖Oj‖2U . (7)

This quantity is referred to as the (squared) shadow
norm. Then by median-of-means estimation, one may
show that

M = O
(

logL
ε2 max

1≤j≤L
‖Oj‖2U

)
(8)

samples suffice to estimate all expectation values to
within additive error ε. To minimize Eq. (8) for a fixed
collection of observables, the only available freedom is in
U . One must therefore properly choose the ensemble of
unitaries, with respect to the target observables.
Naive application to fermionic observables.—A natu-

ral ensemble for near-term considerations is the group
of single-qubit Clifford gates, Cl(1)⊗n (i.e., Pauli mea-
surements). For an `-local Pauli observable P , Huang
et al. [42] showed that ‖P‖2Cl(1)⊗n = 3`, similar to the
results of prior approaches also based on Pauli measure-
ments [36, 37, 40, 41]. While optimal for qubit `-RDMs,
such strategies cannot achieve the desired O(nk) scaling
in the fermionic setting due to the inherent nonlocality
of fermion-to-qubit mappings. Indeed, assuming that the
n fermion modes are encoded into n qubits, the 1-degree
Majorana operators necessarily possess an average qubit
locality of at least log3(2n) [40]. This implies that, under
random Pauli measurements, the squared shadow norm
maximized over all 2k-degree Majorana operators can-
not do better than 32k log3(2n) = 4kn2k. In fact, for com-
monly used mappings such as the Jordan–Wigner [70] or
Bravyi–Kitaev [71–74] transformations, the scalings are
poorer (3n and ∼ 9kn3.2k, respectively).
Randomized measurements with fermionic Gaussian

unitaries.—In order to obtain optimal scaling in the
shadow norm for fermionic observables, we propose ran-
domizing over a different ensemble: the group of fermionic
Gaussian Clifford unitaries. First, the group of fermionic
Gaussian unitaries FGU(n) comprises all unitaries of the
form

U(eA) := exp
(
−1

4

2n−1∑
µ,ν=0

Aµνγµγν

)
, (9)

where A = −AT ∈ R2n×2n. This condition implies
that FGU(n) is fully characterized by the Lie group
SO(2n) [75]. In particular, the adjoint action

U(Q)†γµU(Q) =
2n−1∑
ν=0

Qµνγν ∀Q ∈ SO(2n) (10)

allows for efficient classical simulation of this group [76–
80]. Second, the Clifford group Cl(n) is the set of all uni-
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tary transformations which permute n-qubit Pauli oper-
ators among themselves. It also admits an efficient clas-
sical representation [81, 82].

Since Majorana operators are equivalent to Pauli oper-
ators, we may deduce from Eq. (10) that a unitary which
is both Gaussian and Clifford corresponds to Q being a
signed permutation matrix. Note that this defines the
full group of Majorana swap circuits [37]. As the signs
are irrelevant for our purpose, we simply consider the
group of 2n×2n permutation matrices with determinant
1, known as (the faithful matrix representation of) the
alternating group, Alt(2n).
Concretely, we set

UFGU := {U(Q) ∈ FGU(n) | Q ∈ Alt(2n)}. (11)

Given the context of fermionic tomography, the moti-
vation for studying FGU(n) is clear, as it preserves the
degree of Majorana operators. On the other hand, the
restriction to the discrete Clifford elements is valuable
for practical considerations. As we show in Sec. II of
the Supplemental Material (SM) [83], the permutational
property of Clifford transformations necessarily implies
thatMFGU, as a linear map on the algebra of fermionic
observables, is diagonal in the Majorana-operator basis,

MFGU(Γµ) = λµΓµ ∀µ ∈ C2n,2k, (12)

with eigenvalues

λµ =
(
n

k

)/(
2n
2k

)
≡ λn,k. (13)

In this diagonal form, the channel is readily invertible.
Thus one may obtain closed-form expressions for the clas-
sical shadows ρ̂Q,z, and, importantly, their corresponding
estimators for tr(Γµρ):

tr(Γµρ̂Q,z) = λ−1
n,k

∑
ν∈C2n,2k

〈z|Γν |z〉det[Qν,µ]. (14)

Here, Qν,µ denotes the submatrix of Q formed from its
rows and columns indexed by ν and µ, respectively [98].
Since Q is a permutation matrix, for each µ there is ex-
actly one ν′ such that det[Qν′,µ] 6= 0. Thus Eq. (14) is
nonzero if and only if that Γν′ is diagonal (i.e., maps to
a Pauli-Z operator under a fermion-to-qubit transforma-
tion). In other words, the Clifford operation U(Q) sends
Γµ to ±Γν′ , which can be estimated only if it is diagonal
in the computational basis.

From Eq. (7), the eigenvalues λ−1
n,k of the inverse chan-

nelM−1
FGU determine the shadow norm. The sample com-

plexity of our approach then follows from Eq. (8). We
summarize this first key result with the following theo-
rem.

Theorem 1. Consider all 2k-degree Majorana operators
Γµ on n fermionic modes, labeled by µ ∈ C2n,2k. Under

the ensemble UFGU defined in Eq. (11), the shadow norm
satisfies

‖Γµ‖2FGU =
(

2n
2k

)/(
n

k

)
≈
(
n

k

)√
πk (15)

for all µ ∈ C2n,2k. Thus the method of classical shad-
ows estimates the fermionic k-RDM of any state ρ, i.e.,
tr(Γµρ) ∀µ ∈

⋃k
j=1 C2n,2j, to additive error ε, given

M = O
[(
n

k

)
k3/2 logn

ε2

]
(16)

copies of ρ. Additionally, there is no subgroup G ⊂
FGU(n) ∩ Cl(n) for which ‖Γµ‖G < ‖Γµ‖FGU.

The proof is presented in the SM, Sec. II [83]. Further-
more, noting from Eq. (14) that |tr(Γµρ̂Q,z)| ≤ λ−1

n,k, we
also show in the SM that Bernstein’s inequality [99] guar-
antees the above sample complexity via standard sample-
mean estimation, rather than requiring the median-of-
means technique proposed in the original work on classi-
cal shadows [42].
This result has an intuitive conceptual interpretation.

In the computational basis, there are precisely
(
n
k

)
diag-

onal Majorana operators within C2n,2k, corresponding to
the unique k-fold products of occupation-number opera-
tors (e.g.,

∏k
j=1 a

†
pj
apj

) on n modes. As a permutation
on C2n,2k, each element of UFGU defines a different basis
in which some other subset of

(
n
k

)
operators are diagonal.

Then, one may expect to account for all |C2n,2k| =
(2n

2k
)

Majorana operators by randomly selecting on the order
of
(2n

2k
)
/
(
n
k

)
such bases; Theorem 1 makes this claim rig-

orous.
Fermionic Gaussian circuits have a well-studied com-

pilation scheme based on a Givens-rotation decomposi-
tion [100–102]. For a general element of UFGU, we require
a circuit depth of at most 2n with respect to this decom-
position [102]. Additionally, as pointed out in Ref. [37],
Gaussian unitaries commute with the global parity op-
erator Γ(0,...,2n−1), allowing for error mitigation via sym-
metry verification [103, 104].
Such compilation schemes make use of a group homo-

morphism property, U(Q1)U(Q2) = U(Q1Q2). There-
fore, if the circuit preparing ρ itself features fermionic
Gaussian operations at the end, then we may fur-
ther compile the measurement unitary into the state-
preparation circuit [57]. In the case of indefinite particle
number, this concatenation is essentially free. However,
rotations with particle-number symmetry have depth at
most n [101, 102], so they must be embedded into the
larger Gaussian unitary of depth 2n. This observa-
tion motivates us to explore classical shadows over the
number-conserving (NC) subgroup of FGU(n).
Modification based on particle-number symmetry.—

Fermionic Gaussian unitaries which preserve particle
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number are naturally parametrized by U(n). We express
an element of this NC subgroup as

U(eκ) := exp
(

n−1∑
p,q=0

κpqa
†
paq

)
, (17)

where κ = −κ† ∈ Cn×n, hence eκ ∈ U(n). Since the
particle-number symmetry manifests as a global phase
factor etrκ/2 ∈ U(1), without loss of generality we may
consider trκ = 0, or equivalently, eκ ∈ SU(n). Such
unitaries are also called orbital-basis rotations, owing to
their adjoint action,

U(u)†apU(u) =
n−1∑
q=0

upqaq ∀u ∈ SU(n). (18)

This action on Majorana operators follows by linear ex-
tension.
Taking the intersection with the Clifford group requires

that u be an n×n generalized permutation matrix, with
nonzero elements taking values in {±1,±i}. This corre-
sponds to the group of fermionic swap circuits [71, 101].
Again, the phase factors on the matrix elements are ir-
relevant, so we shall restrict to u ∈ Alt(n). By itself,
this ensemble is insufficient to perform tomography. To
see this, consider an arbitrary reduced density operator
A†pAq := a†p1

· · · a†pk
aqk
· · · aq1 , where p, q ∈ Cn,k. Such

operators are diagonal in the computational basis only
if p = q. Informational completeness thus requires that
there exists some U(u) which maps A†pAq to A†rAr, for
some r ∈ Cn,k. Since u ∈ Alt(n), conjugation by U(u)
simply permutes p and q independently. However, as
permutations are bijective, it is not possible to permute
both p and q to the same r if p 6= q.

Therefore, this ensemble will necessarily require opera-
tions beyond either the NC or Gaussian constraints. The
simplest option for maintaining the low-depth structure
of the basis rotations is to append Pauli measurements
at the end of the circuit. While the resulting circuit no
longer preserves particle number, this addition only in-
curs a single layer of single-qubit gates. Specifically, we
define the ensemble

UNC := {V ◦ U(u) | V ∈ Cl(1)⊗n, u ∈ Alt(n)}. (19)

By virtue of introducing the notion of “single-qubit”
gates, this method is dependent on the choice of fermion-
to-qubit mapping. Let loc(Γµ) denote the qubit locality
of Γµ under some chosen mapping. While Pauli mea-
surements incur a factor of 3loc(Γµ) in the variance, the
randomization over fermionic swap circuits effectively av-
erages this quantity over all same-degree Majorana oper-
ators (rather than depending solely on the most nonlocal
operator). Formally, we find that the shadow norm here
is

‖Γµ‖2NC = Eu∼Alt(n)

[
3− loc[U(u)†ΓµU(u)]

]−1
. (20)

Although this expression does not possess a closed form,
the following theorem provides a universal upper bound.

Theorem 2. Under the ensemble UNC defined in
Eq. (19), the shadow norm obeys

max
µ∈C2n,2k

‖Γµ‖2NC ≤ 9k
(
n

2k

)/(
n− k
k

)
= O(nk) (21)

for a fixed integer k and for all fermion-to-qubit map-
pings. Thus the method of classical shadows with UNC
estimates the k-RDM to additive error ε with sample
complexity

M = O
(
nk logn
ε2

)
. (22)

We provide derivations for the above results in the SM,
Sec. III [83]. Note that we have fixed k as a constant here,
so the asymptotic notation may hide potentially large
prefactors depending on k. To understand such details,
we turn to numerical studies.
Numerical calculations.—Instead of drawing a new cir-

cuit for each repetition, here we employ a simplifica-
tion more amenable to practical implementation. Fix-
ing some integer r ≥ 1, we generate a random collection
{U (j) ∼ U}Kr

j=1 of Kr unitaries such that all target ob-
servables are covered at least r times. We say a Majorana
operator Γµ is covered by the measurement unitary U if
UΓµU† is diagonal in the computational basis. Since the
ensembles considered here consist of Gaussian and Clif-
ford unitaries, we can determine all covered operators ef-
ficiently. Additionally, for the UNC calculations, the qubit
mappings were automated through OpenFermion [105].
To achieve precision corresponding to S = O(1/ε2)

samples per observable, one repeats each circuit dS/re
times. The total number of circuit repetitions for our
randomized protocols is then dS/reKr. For practical pur-
poses, we fix r = 50 in this work (see Sec. V of the SM for
further details [83]). To compare against prior determin-
istic strategies, we compute S×C for each such strategy,
where C is the number of sets of commuting observables
constructed by a given strategy.
For the comparisons presented in Fig. 1, we fo-

cus on the most competitive prior strategies applica-
ble to fermionic RDM tomography. Since the 1-RDM
has a relatively simple structure, optimal strategies are
known [37, 61], and so randomization underperforms for
k = 1. However, the advantage of our UFGU-based
method becomes clear for k ≥ 2. When comparing
against the Majorana clique cover, which features asymp-
totically optimal O(n2) scaling for the 2-RDM [37], we
find a roughly twofold factor improvement by our ap-
proach.
For the UNC case, we observe a trade-off between cir-

cuit size and measurement efficiency. As expected, the
choice of fermion-to-qubit mapping matters here; the
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FIG. 1. (Left): Summary of the methods compared here, cataloging their required circuit types and scalings in the number
of measurement settings. Since graph-based methods [33–35, 38] are resource-intensive, we employ sorted insertion [17] as
a more tractable alternative. The Majorana clique cover [37], which employs the same class of fermionic Gaussian Clifford
circuits as our classical shadows (FGU) unitaries, possesses optimal asymptotic scaling; however, it exhibits jumps at powers
of 2 due to a divide-and-conquer approach. Furthermore, the construction only exists for k ≤ 2. The measurement strategy
using fermionic swap networks is a generalization of the optimal 1-RDM strategy introduced in Ref. [61], which we describe in
Sec. IV of the SM [83]. (Right): Numerical performances (log–log scale). Note that sorted insertion and the Majorana clique
cover are equivalent for k = 1. Since our scheme uses randomization, we include error bars of 1 standard deviation, averaged
over 10 instances. However, they are not visible at the scale of the plots, indicating the consistency of our method.

Jordan–Wigner (JW) mapping performs worse than
Bravyi–Kitaev (BK), since the former possesses more
qubit nonlocality. While more measurement settings are
required compared to the UFGU ensemble (e.g., a factor of
∼ 2–5 under BK, depending on k), each circuit itself re-
quires only half the depth of general fermionic Gaussian
circuits. Notably, however, UNC classical shadows for the
2-RDM under the BK mapping is closely comparable to
the Majorana clique cover.
Conclusions.—We have adapted the framework of clas-

sical shadows to the efficient tomography of fermionic
k-RDMs, applicable for all k. Numerical calculations
demonstrate that our approach consistently outperforms
prior strategies using measurement circuits of compara-
ble sizes when k ≥ 2, despite the logarithmic factor in the
sample complexity (a consequence of rigorously bound-
ing the worst-case probabilistic instances). The power of
randomization here lies in avoiding the NP-hard problem
of partitioning observables into commuting cliques [32–
35]. Instead, we show that a highly overlapping cover
of the observables suffices to perform partial tomography
efficiently, since a factor of O(1/ε2) repetitions is already
required for this task.

An outlook for further applications is to adapt these
ensembles, e.g., for Hamiltonian averaging. As expected,
our method is less efficient in this context than those tai-
lored for the task (see Sec. V C of the SM for preliminary

numerical calculations [83]). Possible modifications may
include biasing the distribution of unitaries [22, 27–29],
or derandomization techniques [25].
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