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Hybrid quantum-classical variational algorithms such as the variational quantum eigensolver
(VQE) and the quantum approximate optimization algorithm (QAOA) are promising applications
for noisy, intermediate-scale quantum (NISQ) computers. Both VQE and QAOA variationally ex-
tremize the expectation value of a Hamiltonian. All work to date on VQE and QAOA has been
limited to Pauli representations of Hamiltonians. However, many cases exist in which a sparse rep-
resentation of the Hamiltonian is known but there is no efficient Pauli representation. We extend
VQE to general sparse Hamiltonians. We provide a decomposition of a fermionic second quantized
Hamiltonian into a number of one-sparse, self-inverse, Hermitian terms linear in the number of
ladder operator monomials in the second quantized representation. We provide a decomposition of
a general d-sparse Hamiltonian into O(d2) such terms. In both cases a single sample of any term
can be obtained using two ansatz state preparations and at most six oracle queries. The number
of samples required to estimate the expectation value to precision ε scales as ε−2 as for Pauli-based
VQE. This widens the domain of applicability of VQE to systems whose Hamiltonian and other
observables are most efficiently described in terms of sparse matrices.

I. INTRODUCTION

The leading applications for noisy, intermediate-scale
quantum (NISQ) computers are the variational quan-
tum eigensolver (VQE) [1] and the quantum approxi-
mate optimization algorithm (QAOA) [2]. VQE esti-
mates the ground state energy (and other properties)
of a Hamiltonian by optimizing an ansatz for an energy
eigenstate [1, 3–15]. QAOA approximately optimizes a
classical objective function using a parameterized quan-
tum state [2]. Methods such as VQE and phase estima-
tion, which compute energy eigenstates, rely on efficient
representations of the Hamiltonian. Two such represen-
tations are widely used: local Hamiltonians and sparse
Hamiltonians. For simplicity we will restrict our discus-
sion henceforth to systems of qubits; generalizations to
tensor factors of arbitrary dimension are straightforward.

Firstly, we describe the efficient representation of
Hamiltonians based on locality. For this representation,
a convenient basis for qubit operators is given by the
Pauli operators, Pi, which are tensor products of Pauli
matrices and the identity. The Hamiltonian is written:

H =

m∑
i

αiPi, (1)

where the αi are real coefficients. This representation
of a Hamiltonian is efficient if the number of terms m
grows only polynomially with the number of qubits. The
locality k of the Hamiltonian (1) is the maximum locality
of any term Pi, which refers to the number of non-identity
tensor factors in Pi. Note that locality here does not
necessarily refer to geometric locality. For qubits the
Hamiltonian is a sum of one-qubit terms, two-qubit terms
and so on. This representation was first used for quantum
simulation by Lloyd [16], and all VQE algorithms to date
make use of this Hamiltonian representation.

A second efficient representation of a Hamiltonian is

based on sparsity, which refers to the maximum number
of nonzero entries in any row or column of the Hamilto-
nian. For example, in a Hamiltonian of the form (1) the
number of nonzero entries in any row or column in the
computational basis is bounded above by d, so we refer
to the Hamiltonian as d-sparse. This follows because the
Pauli operators are one-sparse: they each have only one
nonzero entry in each row and column. However, not ev-
ery sparse Hamiltonian is local, and many sparse Hamil-
tonians do not admit a Pauli decomposition (1) with a
polynomial number of terms. A simple example is the
number operator for a bosonic mode encoded as a binary
number in qubit computational basis states, which is one-
sparse but has an exponential number of Pauli terms.

Quantum simulation of sparse Hamiltonians has un-
dergone extensive study [17–27], culminating in algo-
rithms with optimal (for time-independent Hamiltoni-
ans) [25, 26] or near-optimal (for time-dependent Hamil-
tonians) [27] scaling with all parameters. In these algo-
rithms a d-sparse Hamiltonian is accessed via a pair of
oracle unitaries OF and OH . OF returns the location
of the ith nonzero entry in a given row x. OH returns
the value of the entry in row x and column y to a given
precision. The actions of OF and OH are given by

OF |x, i〉 = |x, yi〉, (2)

OH |x, y〉|z〉 = |x, y〉|z ⊕Hxy〉, (3)

where x is a row-index of H (i.e., a computational basis
state), and for 0 ≤ i ≤ d−1, yi is column-index of the ith
nonzero entry in row x of H. The Hamiltonians are given
via these oracle unitaries for the sake of modularity: the
sparse Hamiltonians are very general, so oracle queries
provide a standardized formalism for accessing them.

A VQE algorithm comprises two main components: a
quantum subroutine for estimating the expectation value
of a Hamiltonian of interest for some parametrized ansatz
state, and a classical outer loop that updates the param-
eters of the ansatz in order to minimize the expected en-
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ergy [1]. The quantum subroutine is implemented by sep-
arately estimating the expectation value of each term in
the Hamiltonian under some decomposition, most com-
monly the Pauli decomposition (1).

In this paper, we extend VQE to sparse Hamiltonians,
the possibility of which was briefly discussed in the Ap-
pendix of [1]. We decompose sparse Hamiltonians into
linear combinations of self-inverse one-sparse Hermitian
matrices. We then show how to estimate the expectation
value of these one-sparse terms using two ansatz state
preparations and calls to the oracle unitaries defining
the Hamiltonian terms. We will show below that our
algorithm requires at most six oracle queries per mea-
surement circuit.

The class of sparse Hamiltonians that admit descrip-
tion by oracles of the forms (2) and (3) is much broader
than the class of local Hamiltonians, which admit efficient
Pauli decompositions and are thus simulable by standard
VQE. To prove that local Hamiltonians are a subset of
sparse Hamiltonians with efficient oracle descriptions, it
is enough to give oracle descriptions of the Pauli oper-
ators, which we do explicitly in the Supplemental Ma-
terial [28]. Hence for any local Hamiltonian, we could
first decompose it into Pauli operators [29–31], and then
simulate each Pauli operator using sparse VQE. All elec-
tronic structure Hamiltonians that can be simulated us-
ing standard VQE can be simulated using sparse VQE in
this way. This also provides an example of oracles with
simple implementations that are appropriate for NISQ
devices.

However, when a Hamiltonian has an efficient Pauli
decomposition, it is not a good candidate for sparse VQE
because the measurement scheme in Section II requires
an extra qubit and an extra ansatz preparation compared
to measuring the Pauli terms directly. The cases of real
interest for sparse VQE are Hamiltonians that are sparse
and admit efficient oracle implementations, but do not
admit efficient Pauli decompositions.

One such case is a Hamiltonian that includes bosons
and is represented in a direct encoding [32], in which the
occupation of each mode is stored in binary in its own reg-
ister of qubits. Bosonic creation and annihilation opera-
tors in this encoding are naturally represented in terms of
Weyl-Heisenberg shift operators but not as Pauli opera-
tors because the occupations of modes can be larger than
one. In [28], we give explicit implementations of oracles
for this case. These implementations can be combined
with the oracles for Pauli operators to handle Hamilto-
nians that act on both fermions and bosons.

The class of sparse Hamiltonians is very large, and we
will not attempt to give an exhaustive list of all theories
that can be addressed within it. However, two more ex-
amples are as follows. The first is quantum field theory
in compact encoding [32, 33], in which only the occupa-
tions of occupied modes are stored, providing asymptot-
ically optimal space efficiency. Oracles for field theories
in compact encoding are explicitly constructed in [33].
The second example is the CI-matrix representation of

quantum chemistry, for which oracles are explicitly con-
structed in [34].

The number of gates and depth of circuits required by
the oracles in [33] and [34] are larger than those required
for Pauli operators or for quantum field theory in the
direct encoding. Implementation of these oracles in the
NISQ era will require extensive error mitigation or sig-
nificantly improved physical gates and qubits. However,
sparse VQE will become possible before other sparsity-
based simulation algorithms [19, 21–27], because these
require more coherent queries to the same oracles.

In Section II we describe the basic structure of VQE for
Hamiltonians that can be decomposed into self-inverse
one-sparse Hermitian terms that possess efficient circuit
representations. In Section III, we describe methods for
obtaining such decompositions. Then in Section IV, we
explain how to construct efficient circuit representations
of the resulting terms. These methods permit the imple-
mentation of efficient VQE procedures for sparse Hamil-
tonians. We close the paper with some discussion and
directions for future work in Section V.

II. SPARSE VQE

VQE was first used to estimate expectation values of
the Hamiltonian [1]. However, many other quantities are
of interest given an ansatz state that is a good approxima-
tion to the ground state or other energy eigenstate. For
example, [15, 32, 35] study various properties of compos-
ite particles in interacting quantum field theory. Proper-
ties such as the invariant mass, mass radius, parton dis-
tribution function, and form factor are expectation val-
ues of corresponding operators, whereas quantities such
as the decay constant are matrix elements between differ-
ent states [35]. We will therefore consider estimation of

quantities 〈φ|Ô|ψ〉 for sparse operators Ô between ansatz
functions |φ〉 = V |0〉 and |ψ〉 = U |0〉 prepared by quan-
tum circuits U and V .

We begin with a Hermitian operator that we assume
has an efficient decomposition into a sum of Hermitian,
self-inverse, one-sparse terms Gj :

Ô =

t∑
j

αjGj (4)

where αj are real coefficients and the number of terms t
is polylogarithmic in the dimension of the Hilbert space
on which Ô acts. If Ô can be efficiently decomposed into
Pauli operators, then the Pauli decomposition of Ô is
an example of (4) because the Pauli operators are self-
inverse and one-sparse. The terms Gj are both Hermi-
tian and unitary, and we further assume that an efficient
quantum circuit for each Gj is known. Circuits for sparse
unitaries were studied in [36].

Any operator Ô of the form (4) is sparse, and the num-
ber of one-sparse terms t is an upper bound on the spar-
sity. In Section III we will explicitly show how to con-
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FIG. 1. Hadamard test circuit realizing estimation of the real
part of the matrix element 〈0|V †GjU |0〉.

struct a decomposition as in (4) for any arbitrary sparse
Hermitian operator. However, for the purpose of this
Section it is enough to assume that this is possible, be-
cause the actual VQE implementation is agnostic to the
method used to obtain the decomposition.

Given (4) we perform M Hadamard tests of the op-
erators V †GjU via the circuit shown in Figure 1. This
circuit has a state register of n qubits initialized in the
all zeros state |0n〉 and a single ancilla register initialized

in the state |+〉 = (|0〉 + |1〉)/
√

2. The first operation
is application of V †GjU controlled on the ancilla qubit.
The second operation is a single qubit Hadamard gate
applied to the ancilla qubit. This circuit is shown in Fig-
ure 1. After application of this circuit, the probability of
observing zero on the ancilla qubit is:

p(0) =
1

2

(
1 + Re〈0n|V †GjU |0n〉

)
. (5)

To replace the real part by the imaginary part of V †GjU
in (5), replace the initial |+〉 state of the ancilla by the

state | − i〉 = (|0〉 − i|1〉)/
√

2.
After M repetitions of the circuit in Fig. 1, one ob-

tains n0 zeros and n1 ones from the measurement out-
comes of the ancilla bit. The quantity (n0−n1)/M is an
estimate of Re〈0n|V †GjU |0n〉. We can therefore inter-
pret ancilla outcome b as determining a random variable
with value (−1)b. The analysis of the variance of these

estimates and hence the scaling of M for given Ô and
precision ε proceeds exactly as for Pauli decompositions
(given in [37, 38]), so the required M for precision ε scales
as ε−2.

In this Section we have given the extension of VQE
to matrices that can be efficiently decomposed into self-
inverse one-sparse Hermitian terms described by efficient
quantum circuits. Estimation of a matrix element of a
self-inverse term Gj between two ansatz states U |0n〉 and
V |0n〉 is accomplished by controlled application of the
ansatz circuits U† and V as well as Gj . For estimation
of expectation values we have U = V and twice as many
ansatz preparations are required as for Pauli decompo-
sition VQE. The necessity of these extra preparations is
apparent when one notes the capability to also estimate
matrix elements between distinct states. In the remain-
der of the paper, we will focus on Hamiltonians for eas-
ier comparison to prior literature on sparse Hamiltonian
simulation, but all of our results will apply to general

sparse, Hermitian observables. We will discuss obtaining
the necessary sparse decompositions in Section III, and
efficiently applying the resulting operators in Section IV.

III. OBTAINING SPARSE DECOMPOSITIONS

Access to a d-sparse Hamiltonian is provided by the
oracles OF and OH as defined in (2) and (3). In the case
that H is one-sparse we can simplify the action of OF :

OF |x, 0〉 = |x, yx〉, (6)

where yx is defined to be the column-index of the single
nonzero entry in row x (corresponding to i = 0).

Given a d-sparse Hamiltonian, we wish to decompose
it into a polynomial number of one-sparse self-inverse
Hermitian terms. In some cases of interest, most no-
tably fermionic Hamiltonians in second-quantized form,
we already have a decomposition into one-sparse Hermi-
tian terms. A Hamiltonian expressed in second-quantized
form is a polynomial of some set of ladder operators for
various particles or modes. The basis for the Hilbert
space is given by the occupation number (Fock) rep-
resentation for each of the modes. Each term in the
Hamiltonian is a monomial of ladder operators, which for
fermions in the Fock basis is one-sparse since its action as
a linear transformation is to map each single Fock state
to some scaling of a single Fock state. Therefore, the
fermionic Hamiltonian in the occupation number basis is
at most d-sparse if it contains d terms, so assuming the
number of terms is polynomial in the number of qubits,
so is the sparsity.

Ladder operator monomials are in general not self-
inverse, nor are they Hermitian. However, for each ladder
operator monomial present in the fermionic Hamiltonian,
its Hermitian conjugate must also be present, and each
such pair together is one-sparse and Hermitian. One-
sparseness follows because for a fermionic ladder operator
monomial, at most one of the monomial and its conju-
gate may act on any given state; this in fact extends to
any Hamiltonian that contains fermionic ladder opera-
tors with nontrivial action in every term, even if bosonic
operators are also present. To obtain a decomposition
into one-sparse terms that are also self-inverse, we use
the following Lemma:

Lemma 1. Any one-sparse Hamiltonian H(1) may be
expressed up to to L bits per real and imaginary part of
each entry as a linear combination of

4L = 4

⌈
log2

(√
2 ‖H(1)‖max

γ

)⌉
(7)

one-sparse, self-inverse Hamiltonians Gj, where γ is the
resulting error in max-norm. The OF oracles for the Gj

are the same as the OF oracle for H(1), and the OH

oracle for any Gj may be computed using two queries to

the OH oracle for H(1).
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The proof may be found in the Supplemental Material
[28]. Note that ‖H(1)‖max denotes the max-norm of H(1),
defined to be the maximum magnitude of any entry in
H(1), which is upper-bounded by ‖H(1)‖∞ [39].

Lemma 1 is constructive, so we can use the proof to
decompose each Hermitian conjugate pair of ladder op-
erator monomials into one-sparse, self-inverse terms. If
N is the number of ladder operator monomials in the
second-quantized fermionic Hamiltonian, the number of
conjugate pairs is N/2, so Lemma 1 provides a decom-
position of H into a linear combination of at most

2N

⌈
log2

(√
2 ‖H‖max

γ

)⌉
(8)

one-sparse, self-inverse Hermitian terms, since the max-
norm of each monomial is upper-bounded by ‖H‖max.

Beyond the case of fermionic second-quantized Hamil-
tonians we consider an arbitrary d-sparse Hamiltonian
that we only have oracle access to. This includes the case
of second-quantized Hamiltonians with both fermionic
and bosonic modes. In order to apply Lemma 1 we first
decompose the Hamiltonian into one-sparse terms:

Lemma 2 ([40], Lemma 4.4). If H is a d-sparse Hamil-

tonian, there exists a decomposition H =
∑d2

j=1Hj where
each Hj is Hermitian and one-sparse. An OF query to
any Hj can be simulated with two OF queries to H, and
an OH query to any Hj can be simulated with one OH

query to H.

The proof (in [40]) is again constructive, so we can use
Lemma 2 to obtain Hermitian one-sparse terms Hj , and
then use Lemma 1 to approximately decompose each of
these into Hermitian one-sparse, self-inverse terms. The
resulting total number of one-sparse, self-inverse terms
in the decomposition of H is at most

4d2

⌈
log2

(√
2 ‖H‖max

γ

)⌉
. (9)

Comparing (9) and (8), we see that in cases where ei-
ther decomposition could be used, which one is preferable
depends on half the number of ladder operator monomi-
als (N/2) versus the squared sparsity (d2). For example,
the light-front Yukawa model studied in [32] leads to a
second-quantized Hamiltonian whose sparsity scales as
Θ(N2/3). This is sublinear because each ladder oper-
ator monomial maps a large number of Fock states to
zero in this model. However, even though the sparsity
is asymptotically smaller than N , the squared sparsity
is d2 = Θ(N4/3), so for this example it is still better to
separately decompose each Hermitian conjugate pair of
ladder operator monomials into one-sparse, self-inverse
terms using Lemma 1.

We use the decomposition provided by Lemmas 1 and 2
because it results in terms that are one-sparse and uni-
tary, and as we will see below, have entries ±1 or ±i;

the cost is that the decomposition itself is approximate.
However, the resulting terms can be implemented exactly
using at most six oracle queries (see Section IV). Alter-
native decompositions exist that avoid approximations in
the decompositions themselves (e.g., [41]), so it is possible
that in future the method given above can be improved
if the terms in such a decomposition can be implemented
using few oracle queries.

IV. EVOLUTION UNDER ONE-SPARSE
UNITARY OPERATORS

The expectation value estimation method in Sec-
tion II requires controlled applications of one-sparse, self-
inverse, Hermitian operators; let G be such an operator.
In practice, G will be one of the operators Gj obtained
from Lemma 1. There is an extensive body of methods
for simulating sparse Hamiltonians [17–27], any of which
could be used to implement the controlled application of
G. However, because G is one-sparse and self-inverse,
we can use a simpler method similar to the construction
of the quantum walk operator in [21] (see the proof of
Lemma 4 in [21]). The fact that methods for simulation
of time evolution generated by sparse Hamiltonians can
also be used for simulation of sparse unitaries was first
noted in [36].

Using the oracles OF and OH for G, we can apply G as
follows: let |x〉s be any input computational basis state,
and let |0〉a1

|0〉a2
be ancilla registers. The steps to apply

G are: first,

|x〉s|0〉a1
|0〉a2

OF−−→ |x〉s|yx〉a1
|0〉a2

(10)

OH−−→ |x〉s|yx〉a1
|Gxyx

〉a2
, (11)

where yx is the column-index of the single nonzero entry
in row x of G, as in (6). From the proof of Lemma 1 (in
the Supplemental Material [28]), it follows that Gxyx

=
±1 ∀x, y or Gxyx

= ±i ∀x, y. Whether the entries are
±1 or ±i is determined by j (where G = Gj for some
Gj resulting from Lemma 1), which is evaluated in clas-
sical preprocessing. Therefore, |Gxyx

〉a2
need only be a

single qubit determining the sign, and as our next step
we can apply entry Gxyx

exactly as a phase controlled by
|Gxyx

〉a2
, and then complete the implementation of G as

follows:

controlled phase−−−−−−−−−−→ Gxyx
|x〉s|yx〉a1

|Gxyx
〉a2

(12)

O−1
H−−−→ Gxyx

|x〉s|yx〉a1
|0〉a2

(13)
swap s, a1−−−−−−→ Gxyx

|yx〉s|x〉a1
|0〉a2

(14)

O−1
F−−−→ Gxyx

|yx〉s|0〉a1
|0〉a2

, (15)

where the last step follows because for a one-sparse, Her-
mitian operator, (6) implies

OF |yx, 0〉 = |yx, x〉. (16)



5

The effect of these operations is to map

|x〉s 7→ Gxyx
|yx〉s = G|x〉s, (17)

i.e., we have applied G to |x〉s. This required four queries
to the oracles: one query each to OF , OH , and their
inverses. For ancillas, we required copying the computa-
tional register s in the register a1 to apply the OF oracle,
and one additional qubit in the register a2 to represent
the sign of Gxyx = ±1,±i. In both queries and ancillas,
these are the minimum requirements to apply the oracle
unitaries at all.

Finally, recall that the one-sparse, self-inverse terms
that we are estimating expectation values of were ob-
tained via Lemma 1, above. However, the full Hamil-
tonian is first decomposed into one-sparse terms H(1),
either conjugate pairs of ladder-operator monomials or
via Lemma 2, which form the inputs to Lemma 1. From
Lemma 1 we know that the OF oracle for any of the Gj

is identical to the OF oracle for H(1). Also, from the
proof of Lemma 1, we know that the OH oracle for any
of the Gj can be implemented by first applying the OH

oracle for Gj and then performing a single controlled op-
eration (we would later undo both of these steps to apply
O−1H ). Hence the number of queries to each H(1) is still
four, each of which will either be implemented directly
(in the ladder operator monomial decomposition), or via
one (for OH) or two (for OF ) queries to the full Hamil-
tonian using Lemma 2. This gives a total of at most six
oracle queries.

V. CONCLUSION

In existing studies, the only Hamiltonian input model
used in VQE has been decomposition into Pauli opera-
tors. In this paper we have extended VQE to the case of
sparse Hamiltonians. We accomplished this by employ-
ing a variant of techniques previously considered applica-
ble to future fault-tolerant quantum computers [40]. For
sparse Hamiltonians, we have demonstrated how VQE
can be implemented via a decomposition into one-sparse,
self-inverse Hermitian terms. As discussed in the intro-
duction, simulation of second-quantized Hamiltonians in
condensed matter, high energy and nuclear physics, and
in compact representations of quantum chemistry are
natural candidates for this sparse VQE method [15, 32–
35, 42].

This paper focused on VQE, but the results may also
be used in the context of QAOA [2]. QAOA to date
treats classical objective functions that are a sum of lo-
cal clauses, of which 3-SAT is a canonical NP-complete
example. Classical objective operators are diagonal in
the computational basis and hence naturally one-sparse.
The techniques here would allow extension to the case
where the diagonal entries are given by more complicated
classical functions. This broadens the space of exam-
ples within which to search for quantum advantage and
also may provide practical advantages for problems with
large locality such as the travelling salesman problem.
We leave the investigation of these problems for future
work.
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