
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spatiotemporal Crossover between Low- and High-
Temperature Dynamical Regimes in the Quantum

Heisenberg Magnet
Maxime Dupont, Nicholas E. Sherman, and Joel E. Moore

Phys. Rev. Lett. 127, 107201 — Published 31 August 2021
DOI: 10.1103/PhysRevLett.127.107201

https://dx.doi.org/10.1103/PhysRevLett.127.107201


Spatiotemporal crossover between low- and high-temperature dynamical regimes
in the quantum Heisenberg magnet

Maxime Dupont, Nicholas E. Sherman, and Joel E. Moore
Department of Physics, University of California, Berkeley, California 94720, USA and

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

The stranglehold of low temperatures on fascinating quantum phenomena in one-dimensional quantum mag-
nets has been challenged recently by the discovery of anomalous spin transport at high temperatures. Whereas
both regimes have been investigated separately, no study has attempted to reconcile them. For instance, the
paradigmatic quantum Heisenberg spin-1/2 chain falls at low-temperature within the Tomonaga-Luttinger liquid
framework, while its high-temperature dynamics is superdiffusive and relates to the Kardar-Parisi-Zhang univer-
sality class in 1 + 1 dimensions. This work aims at reconciling the two regimes. Building on large-scale matrix
product state simulations, we find that they are connected by a temperature-dependent spatiotemporal crossover.
As the temperature T is reduced, we show that the onset of superdiffusion takes place at longer length and time
scales ∝ 1/T . This prediction has direct consequences for experiments including nuclear magnetic resonance:
it is consistent with earlier measurements on the nearly ideal Heisenberg S = 1/2 chain compound Sr2CuO3 yet
calls for new and dedicated experiments.

Introduction.—At low temperatures, reduced spatial dimen-
sionality greatly enhances quantum fluctuations in physical
systems, giving rise to exotic properties. In that regard, one-
dimensional (1D) quantum many-body systems have always
been influential and generically fall into two classes [1, 2]: on
the one hand, gapless low-energy excitations described in the
framework of Tomonaga-Luttinger liquid (TLL), and on the
other, a gapped behavior. Theoretical predictions have been
intensively checked by experiments in various contexts, rang-
ing from ultra-cold atom setups to quantum magnets [3, 4].

At energy ~ω � kBT , the physics is usually thought of in
terms of thermal rather than quantum effects. This regime
had not been thought to hold phenomena as compelling as
its low-temperature counterpart until very recently. Indeed,
recent theoretical progress suggests that the equilibrium and
out-of-equilibriumdynamics of some 1Dquantum systems can
exhibit peculiar behaviors and contain information about the
intrinsic quantum features, even at very high temperatures [5–
7].

While such many-particle systems are governed at the mi-
croscopic level by the Schrödinger equation, they display in
the long-time and long-wavelength limits an emergent coarse-
grained hydrodynamic behavior. An analogy can be made
with classical fluid dynamics: one does not describe individual
particles with Newton’s laws of motion but relies instead on
phenomenological continuous differential equations, ideally
more amenable. The derivation of hydrodynamic equations is
based essentially on continuity equations of conserved quanti-
ties (e.g., mass, energy, etc.), assuming local equilibrium [8].

Quantum systems also possess conservation laws, and de-
pending on those, one expects the emergence of different kinds
of coarse-grained hydrodynamic descriptions. Singularly in
1D, a class of quantum systems – known as integrable – has an
infinite set of nontrivial conserved quantities which can lead
to anomalous dynamical behaviors [5–7, 9–34].

Integrable systems are typically described by very fine-
tuned models but some of them can be reliably realized in
the lab (e.g., the Lieb-Liniger model representing a gas of

one-dimensional bosons with contact repulsion [35, 36]) and
found with high fidelity in nature (e.g., the spin-1/2 Heisen-
berg chain ofmagneticmoments coupled by a nearest-neighbor
exchange interaction [2]). In that context, some of the theoret-
ical predictions have been successfully tested on 1D cloud of
trapped 87Rb [37, 38] and 7Li [39] atoms for out-of-equilibrium
dynamics and by neutron scattering on the quantum magnet
KCuF3 at thermal equilibrium [34].
In the case of quantummagnets, it has been numerically con-

jectured, based on microscopic simulations, that in the limit of
infinite temperature, the spin dynamics of the S = 1/2 Heisen-
berg chain is anomalous and belongs to the Kardar-Parisi-
Zhang (KPZ) universality class in 1 + 1 dimensions [20, 40].
It is characterized by a dynamical exponent z = 3/2, control-
ling the length-time scaling of the dynamical properties. This
exponent has been recently observed in the high-temperature
neutron spectrum of KCuF3 [34], which is directly propor-
tional to the dynamical structure factor, probing spin-spin cor-
relations.
Here, we seek to reconcile the low-temperature physics of

the S = 1/2 Heisenberg chain, falling within the gapless TLL
category, with the recently found infinite-temperature KPZ
hydrodynamics. Whereas both regimes have been studied in-
dependently, no work has attempted to bring them together.
In this Letter, we precisely define the long-time and long-
wavelength limits for the emergence of anomalous dynamics
versus the temperature. We find that these limits define a
spatiotemporal crossover beyond which hydrodynamics take
place. As the temperature is lowered, the crossover is pushed
towards infinity and eventually disappears at exactly zero tem-
perature, see Fig. 1. This scenario allows one to recover the
well-known zero temperature results where KPZ hydrodynam-
ics is absent. Moreover, because experimental dynamical con-
densed matter probes such as neutron scattering or nuclear
magnetic resonance (NMR) work for all practical purposes at
a finite frequency and finite temperatures, it is paramount to
better understand and quantitatively define the theoretical lim-
its. We discuss the implication of our results for experiments
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FIG. 1. Log-scale intensity plot of the Euclidean norm of the spin-
spin correlation (2) at T = 0.25. Simulation obtained for L = 256
with χ = 1024. The goal of this work is to determine and study the
superdiffusive region delimited by the spatiotemporal crossover t? of
Eq. (3) versus the temperature (white circles and dashed white line).
As the temperature is decreased, we find that the superdiffusive region
is shifted vertically to longer and longer times by a factor ∝ 1/T , and
eventually disappear at exactly zero temperature.

and confront our findings to earlier high-temperature NMR ex-
periments on the nearly ideal Heisenberg spin-1/2 compound
Sr2CuO3 [41].

Model and method.— The 1D spin-1/2 Heisenberg model
is described by the lattice Hamiltonian,

Ĥ = J
∑

j
Ŝ j · Ŝ j+1, (1)

with Ŝ j = (Ŝx
j , Ŝ

y
j , Ŝ

z
j ) and J > 0 the nearest-neighbor antifer-

romagnetic exchange. To investigate the thermal equilibrium
spin dynamics, we consider the time-dependent spin-spin cor-
relation function,

C
(
T, x, t

)
= tr

(
Ŝx

(
t
) · Ŝ0

(
0
)
ρ̂T

)
∈ C, (2)

with ρ̂T = e−Ĥ/kBT /tr(e−Ĥ/kBT ) the thermal density matrix
of the system at temperature T and Ŝ j

(
t
)
= eiĤt/~Ŝ je−iĤt/~

the time-dependent spin operator in the Heisenberg picture.
We set J = kB = ~ = 1 in the following. We compute the
correlation function (2) based on a numerical matrix product
state (MPS) approach [42, 43] where we represent the mixed
state as a pure state in an enlarged Hilbert space [44, 45].
We use the time-evolving block decimation algorithm [46]
along with a fourth-order Trotter decomposition [47] to handle
the exponential operators [48]. To ensure convergence of the
numerical data, we study in the Supplementary Information
(SI) the effect of the bond dimension χ of the MPS, which is
the control parameter of the simulations (larger is better, but
computationally more expensive) [49].

At fixed distance x and temperature T , the hydrodynamics
regime is characterized by an algebraic decay of the Euclidean
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FIG. 2. Time dependence of the norm of the spin-spin correlation (2)
at x = 0 for various temperaturesT . Simulations obtained for L = 256
with χ = 1024. At long time, it displays an algebraic decay with time,
according to Eq. (3). It is well-fitted by the formΥ(T) t−2/3 withΥ(T)
a temperature-dependent prefactor decreasing with the temperature
reported in Fig. 3(b). The deviation from the genuine power-law at
long-time is the result of the bond dimension being too small [49].

norm of the spin-spin correlation (2) function at long time,��C (
T, x, t

) �� ∝ t−1/z for t & t?
(
x,T

)
, (3)

with z the dynamical exponent. The long-time limit is denoted
by the crossover time t? which we aim to identify, see Fig. 1.
Depending on the microscopic model, three values for the
exponent z have been reported for 1D quantum magnets: z =
3/2 corresponding to superdiffusion, z = 1 for ballistic and
z = 2 for diffusion [24, 25]. Superdiffusion is expected for the
isotropic spin-1/2 Heisenberg model of Eq. (1).
Autocorrelation.— We first consider the autocorrelation

function (x = 0) versus time for different temperatures, as
plotted in Fig. 2. Two regimes are clearly visible, delimited
by the crossover time t?(x = 0,T) [49]. Beyond the crossover
time and for all temperatures, one finds the expected power-
law decay ∝ t−2/3 of superdiffusive hydrodynamics. Note that
the rapid change of slope from the genuine power-law, at the
longest times displayed, is the result of the bond dimension
being too small and not a physical effect [49].
With high-temperature physics beyond t?, one can suspect

low-temperature features at shorter times. For instance, the
oscillating behavior observed in the norm of the autocor-
relation is reminiscent of a change of sign in the real and
imaginary part [49], signaling antiferromagnetic correlations
as the temperature is lowered. The long-time asymptotic of
C(T = 0, x = 0, t) have been studied at exactly zero tempera-
ture [50, 51]. It is composed by several power-law decaying
contributions with the slowest one being ∝ t−1 (up to logarith-
mic corrections inherent to the isotropic spin-1/2 Heisenberg
antiferromagnet [49, 52–59]). We cannot identify this regime
in Fig. 2, which we attribute to insufficiently low temperatures,
see the SI for additional data [49].
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FIG. 3. The data points are extracted from Fig. 2. (a) Temperature
dependence of the crossover timescale t?

(
x = 0,T

)
beyond which the

algebraic decay ∝ t−2/3 for superdiffusive hydrodynamics emerges,
see Eq. (3). It shows a linear dependence with the inverse temperature
(dashed line). (b) Temperature dependence of the prefactor Υ(T) of
the algebraic decay∝ t−2/3 for superdiffusive hydrodynamics. At low
temperatures T . 1, it follows a quadratic dependence ∝ T2 (dashed
line).

We now turn our attention to the temperature dependence of
the crossover time t?(x = 0,T). It is plotted in Fig. 3(a)
versus the inverse temperature and shows a linear depen-
dence. It can be understood as follows. It is well-known
that a finite temperature induces a thermal correlation length
ξ which diverges as T → 0 as ∝ u/T (up to logarithmic cor-
rections [49, 53]) with u the velocity of low-energy excitations
in the spin-1/2 chain. Moreover, the dynamical correlation
function (2) can also be thought of as measuring the spreading
of a spin excitation. In this picture, the system behaves like
a TLL for t . ξ/u, which can be identified as the crossover
time t?(x = 0,T) ∝ 1/T . Hence, the onset of superdiffusive
hydrodynamics simply takes place as the low-energy physics
gets suppressed by the finite temperature. It is only at zero
temperature that the system is strictly critical and thus does
not display any sign of anomalous high-energy dynamics. In
addition to the linear dependence with ∝ 1/T , there is an O(1)
constant in Fig. 3(a) which coincides with the very short-time
dynamics where |C(T, x = 0, t ' 0)| ' 0.75.

At infinite temperature, it has been established that the dy-
namics belong to the 1+1 KPZ universality class [20, 40], as
it shows the same scaling laws as appear in the KPZ equa-
tion itself: ∂th = 1

2λ
(
∂xh

)2
+ ν∂2

xh +
√
ση with h ≡ h(x, t),

η ≡ η(x, t) a normalized Gaussian white noise, and λ, ν, σ
parameters. It is a Langevin equation, with no quantum roots
– and which makes the observation of its physics in a quantum
magnet rather puzzling. In the right limits, the noise-averaged
slope correlations behave as [60, 61],

CKPZ
(
x, t

) ' χs
(
λKPZt

)−2/3 fKPZ

[
x
(
λKPZt

)−2/3] (4)

with χs = σ/2ν the static spin susceptibility [49], λKPZ =
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FIG. 4. (a) Time dependence of the norm of the spin-spin correla-
tion (2) at T = 0.25 for various distances x. Simulations obtained
for L = 256 with χ = 1024. The curves have been shifted verti-
cally for visibility. At long time, it displays an algebraic decay with
time, according to Eq. (3), well-fitted by the form ∝ t−2/3. The de-
viation from the genuine power-law at long time is the result of the
bond dimension being too small [49]. (b) Spatial dependence of the
crossover time t?(x,T) beyond which the algebraic decay ∝ t−2/3 for
superdiffusive hydrodynamics emerges, see Eq. (3). The dashed lines
are fits of the form A + B |x |3/2 with A ≡ t?(0,T) and B = 0.17(3)
found to be temperature-independent [49].

√
2λ, and fKPZ the KPZ scaling function [62]. The numerical

observation of the scaling (4) for the Heisenberg spin chain
through the spin-spin correlation (2) served as a conjecture re-
garding the nature of its dynamics [20]. A theoretical scenario
for how KPZ hydrodynamics emerges in the Heisenberg chain
has been advanced [30]. A relation between the parameters
of the KPZ equation with those of the microscopic quantum
model has been proposed [26]. Here, by identifying the pref-
actor of CKPZ(x = 0, t) in Eq. (4) with the prefactor Υ(T) of
the power-law decay ∝ t−2/3 shown in Fig. 3(b), we are able
to report on the temperature dependence of the parameters.
The high-temperature data points are compatible with Ref. 26.
In addition, for T . 1, we find that Υ(T) = 0.13(1)T2, and
therefore that χsλ

−2/3
KPZ fKPZ(0) ∝ T2. We argue in the following

that this behavior is compatible with earlier NMR experiments
on Sr2CuO3 [41, 49].
The definition of the crossover time t? in Eq. (3) for the

onset of superdiffusion is related to the power-law dependence
∝ t−2/3 and not fKPZ of Eq. (4). It is well-known that unam-
biguously identifying the scaling function from microscopic
simulations with fKPZ requires great numerical precision and
long-time data for all distances x [20]. This is beyond the
capability of our simulations at low temperatures. Instead, we
consider the spatial dependence of t? for |x | > 0.
Spatiotemporal crossover.— The time-dependent spin-spin

correlation function (2) is associated with a light-cone struc-
ture and we therefore expect t?(x,T) to be an increasing func-
tion with the distance |x |. It is verified in Fig. 4(a) where we
plot its time dependence at fixed temperature (T = 0.25). As
|x | increases, the onset of superdiffusion takes place at longer
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and longer times, and we display the crossover timescale in
Fig. 4(b) for different temperatures. Because we can only re-
liably estimate it for |x | . 30, it is difficult to draw a definite
conclusion on its scaling. Nevertheless it is compatible with a
superdiffusive length-time scaling of the form,

t?
(
x,T

)
= 0.4(9) + 6.8(4)

T
+ 0.17(3)

�� x
��3/2, (5)

with the first two terms obtained from the t?(x = 0,T) data,
see Fig. 3(a). The prefactor of |x |3/2 is found independent of
the temperature [49]. The reported numerical parameters are
obtained by least-square fitting. The spatiotemporal crossover
time (5) is plotted on top of the norm of the spin-spin corre-
lation in Fig. 1 for T = 0.25. Note that based on this picture,
we expect logarithmic corrections for the temperature depen-
dence, but they are not detectable from our simulations [63].

Experimental consequences.— Although we have focused
on the norm of the spin-spin correlation (2), we find that
|ImC(T, x, t)| � |ReC(T, x, t)| for t & t?, and that the su-
perdiffusive power-law∝ t−2/3 only holds for the real part [49],
which therefore hosts the relevant high-temperature physics.
For instance, superdiffusion was observed in KCuF3 by neu-
tron scattering in the limit of small momentum and vanishing
frequency [34], which probes the Fourier transform tomomen-
tum and frequency spaces of C(T, x, t).
Another promising experimental technique for investigat-

ing high-temperature hydrodynamics is NMR, which has been
successfully used to characterize the low-temperature TLL
regime in numerous spin compounds [59, 64–71]. Nuclear
spins are polarized via a static magnetic field (ideally weak)
and then perturbed by an electromagnetic pulse of frequency
ω0, chosen to target specific nuclei as per the Zeeman split-
ting. Following the perturbation, the nuclear spins relax
over time with an energy transfer to the electrons. When
the nuclear and electronic spins belong to the same atom,
the relaxation rate is related to the autocorrelation func-
tion, 1/T1 ∼

∫ 1/ω0
0 ReC(T, x = 0, t) dt [72–74]. With ω0

of the order of a few mK, it usually leads to a frequency-
independent 1/T1 as long as the correlation decays quickly
enough. Here, the hydrodynamics regime should lead instead
to 1/T1 ∝ ω1/z−1

0 and give access to z in the right frequency
regime. According to Eq. (5), the corresponding crossover
frequency scale, ω? ∼ 1/t?, goes as ∝ T , and superdiffusion
will be visible ifω0 � ω? ∼ T . Considering the experimental
range ofω0, this condition is fulfilled even at low temperatures,
where measurements are often less noisy and less subject to
spoiling effects such as phonons.

Thus, the existence of a finite spatiotemporal crossover
t?(x,T) in the form of Eq. (5) confirms that superdiffusive
hydrodynamics is within the experimentally relevant window
of parameters with respect to temperatures, time and length
scales for quantities involving ReC(T, x, t).
In fact, a power-law behavior of the form 1/T1 ∝ ω−α0 has

been reported in the nearly ideal spin-1/2 Heisenberg antifer-
romagnet Sr2CuO3 (J ' 2200 K) at T = 295 K a couple of
decades ago [41]. NMR was performed on the 17O, coupled

symmetrically to theCu2+ carrying the relevant electronic spin,
which filtered out the q = ±π contributions in the 1/T1 due to
form factors, but not the long-wavelengthmodes q = 0 holding
hydrodynamics. Although the measurement accuracy was not
sufficiently precise to extract the exponent α, the results are
compatible with α ≈ 0.33, which corresponds to z = 3/2 [49].
In addition, the authors find that at fixed frequency, the NMR
relaxation rate may be approximated by an empirical form
1/T1T ≈ a + bT for T � J with a and b fitting constants.
When dropping a, this is compatible with Υ(T) ∝ T2 reported
in Fig. 3(b) [49], which relates to the temperature dependence
of the parameters of the KPZ equation.

Today’s theoretical understanding of the dynamics of 1D
quantum systems and our results call for new NMR experi-
ments on spin chains at high temperatures. It would provide
a complementary probe to neutron scattering [34] to access
anomalous spin transport in quantum materials.

Conclusion.—Building on large-scaleMPS calculations, we
reconciled the well-established low-temperature dynamics of
the quantum Heisenberg spin-1/2 chain with the recently pre-
dicted high-temperature superdiffusive regime related to KPZ
hydrodynamics. We have found that both coexist, and the tran-
sition from one to the other takes the form of a spatiotemporal
crossover. The crossover is controlled by the temperature: as
the temperature is lowered, the growing quantum correlations
between degrees of freedom push the onset of superdiffusion
to longer length and time scales as ∝ 1/T . We also reported
on the temperature dependence of the parameters of the KPZ
equation, which should provide useful guidance in relating
them to the microscopic parameters of the quantum model.
We also showed that only the real part of the spin-spin corre-
lations holds the superdiffusive hydrodynamics. Finally, we
discussed the experimental consequences of our results for
condensed matter probes. We motivated NMR experiments
as a great way to measure spin transport in quantum mate-
rials and showed that earlier results are compatible with the
current theoretical understanding yet calling for new experi-
ments in quantum spin chains. Because NMR requires the
use of a static magnetic field to polarize the nuclear spins,
it would be insightful to study the effect of this perturbation
on the dynamics of the S = 1/2 Heisenberg chain studied in
this work. We believe that it would induce another crossover
from superdiffusion to ballistic dynamics, which needs to be
characterized.
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