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We consider quantum diffusion in ultra-slow-roll (USR) inflation. Using the ∆N formalism, we
present the first stochastic calculation of the probability distribution P (R) of the curvature per-
turbation during USR. We capture the non-linearity of the system, solving the coupled evolution
of the coarse-grained background with random kicks from the short wavelength modes, simultane-
ously with the mode evolution around the stochastic background. This leads to a non-Markovian
process from which we determine the highly non-Gaussian tail of P (R). Studying the production of
primordial black holes in a viable model, we find that stochastic effects during USR increase their
abundance by a factor ∼ 105 compared to the Gaussian approximation.

Introduction.– Compelling evidence [1] supports a
phase of accelerated expansion, inflation, as the leading
framework for the early universe [2–15]. In the simplest
models, a scalar field – the inflaton – rolls down its poten-
tial with the Hubble friction and potential push balanced.
This is known as slow-roll (SR). However, if the poten-
tial has a very flat section or a shallow minimum, the
potential push becomes negligible, and the inflaton ve-
locity falls rapidly due to Hubble friction. This is called
ultra-slow-roll (USR) [16–20]. While SR generates close
to scale-invariant and almost Gaussian perturbations, as
observed in the cosmic microwave background (CMB),
the perturbations produced by USR are far from scale-
invariant and can be highly non-Gaussian. This implies
that the inflaton cannot be in USR when the observed
CMB perturbations are generated.1 However, if the in-
flaton enters USR afterwards, large perturbations can be
created on small scales, potentially seeding primordial
black holes (PBH) [23–36], a longstanding dark matter
candidate [37–44].

During inflation, initially sub-Hubble (k � aH) quan-
tum fluctuations are amplified and stretched to super-
Hubble scales (k � aH), where k is the comoving
wavenumber, a is the scale factor and H ≡ ȧ/a is the
Hubble rate. Once modes reach super-Hubble scales,
they can be coarse-grained, contributing stochastic noise
to the evolution of the background formed by long wave-

1 As studied in [21], USR between the observable CMB region and
the end of inflation can nevertheless affect the CMB spectrum
through rare patches that undergo a large number of e-folds of
inflation. The effect of USR near the CMB region on the power
spectrum has also been studied in [22].

length modes, which are squeezed and ’classicalized’ [45–
50]. This is described by the formalism of stochastic in-
flation [21, 51–83]. Stochastic effects can be particularly
relevant during USR for two reasons: i) the classical push
from the potential is negligible, so the inflaton velocity
decays rapidly and the background evolution is more sen-
sitive to stochastic kicks, ii) the perturbations are larger
and hence give stronger kicks [21, 33–35, 81, 82, 84–87].

Stochastic effects on the power spectrum PR(k) of the
curvature perturbation R generated during USR have
been studied in [21, 33–35, 81, 84–87] (see [34, 81, 85] for
higher moments). It was demonstrated in [82, 88], how-
ever, that stochastic effects lead to an exponential tail in
the probability distribution P (R), which overtakes the
linear theory Gaussian tail. Calculating the power spec-
trum PR(k) is therefore not enough to determine the
PBH abundance today, ΩPBH, which is exponentially sen-
sitive to the shape of the tail of P (R). In this Letter we
present the first calculation of the non-Gaussian tail of
P (R) due to stochastic effects during USR. We solve si-
multaneously the evolution of the background dynamics
with stochastic kicks from the small wavelength modes,
and the evolution of the small wavelength modes that
live in this stochastic background. We consider a model
where the Standard Model Higgs is the inflaton [89, 90].
We use the renormalization group running to create a
shallow minimum that leads to USR, tuned to produce
PBHs with mass MPBH = 7 × 10−15M�, with an abun-
dance that contributes significantly to dark matter in the
Gaussian approximation [31] (see also [24–26, 30, 91]).
We adjust the SR part of the potential by hand to fit
CMB observations.

Stochastic formalism.– We consider a spatially flat
Friedmann–Lemâıtre–Robertson–Walker (FLRW) back-



2

ground metric with scalar perturbations, split into
long and short wavelength modes. Correspondingly,
the inflaton is decomposed as φ = φ̄(t, ~x) + δφ(t, ~x),

where φ̄ = (2π)−3/2
∫
k<kc

d3k φ~k(t)e−i
~k·~x and δφ =

(2π)−3/2
∫
k>kc

d3k φ~k(t)e−i
~k·~x. The long wavelength part

φ̄ describes the inflaton coarse-grained over a super-
Hubble patch of length 2π/kc, where kc = σaH is a
coarse-graining scale with σ � 1 (we discuss the precise
value later).

In the leading long wavelength approximation, the
background follows the Friedmann equations, while the
short wavelength modes obey the linear perturbation
equations over the FLRW background [92, 93]. As the
universe expands, short wavelength modes are stretched
to super-Hubble scales. Going beyond the leading ap-
proximation, the resulting change in the local background
is captured by the stochastic formalism, where the back-
ground evolution is given by a Langevin equation that
includes the backreaction of the short wavelength per-
turbations [21, 51–83]. The short wavelength modes con-
tribute random noise to the local background equations.
The randomness is due to the quantum origin of the ini-
tial conditions of the short wavelength modes.

Except for a few studies (e.g. [65–67]), previous works
solved the short wavelength modes over a non-stochastic
background. We go one step further by including the
effect of the stochastic change of the local background on
the dynamics of the short wavelength modes, capturing
the interaction between the modes and the background at
every moment. This leads to a non-Markovian process.
The noise depends on the short wavelength modes, which
depend on the coarse-grained field, so each new kick is
affected by the history of previous kicks.

The equations of motion of the coarse-grained field
with stochastic effects are obtained as usual, including
the short wavelength contribution in the time deriva-
tives only, reinterpreted as stochastic noise. For the short
wavelength modes, we use linear perturbation theory in
the spatially flat gauge, and replace the background fields
by their coarse-grained counterparts. The equations of
motion read (with the reduced Planck mass set to unity)

φ̄′ = π̄ + ξφ , (1)

π̄′ = −(3 +H ′/H)π̄ − V,φ̄/H2 + ξπ , (2)

2V = (6− π2)H2 , (3)

δφ′′~k + (3 +H ′/H)δφ′~k + ω2
kδφ~k = 0 , (4)

where V (φ̄) is the inflaton potential, N ≡ ln(a/a∗) is
the number of e-folds (∗ refers to the Hubble exit of
the CMB pivot scale k∗ = 0.05 Mpc−1), ′ ≡ d/dN ,
ξφ and ξπ are the field and momentum noise (following
Gaussian statistics), respectively, and ω2

k ≡ k2/(aH)2 +
π̄2(3 + 2H ′/H − H ′/H2) + 2π̄V,φ̄/H

2 + V,φ̄φ̄/H
2. We

initialize the modes deep inside the Hubble radius in
the Bunch–Davies vacuum, so δφ~k = 1/(a

√
2k), δφ′~k =

φ̄f φ̄PBH φ̄i
φ

V (φ)

FIG. 1. The inflationary potential, with a plateau and a shal-
low local minimum. The initial field value φ̄i (close to the
CMB pivot scale), the end of USR φ̄PBH, and the end of infla-
tion φ̄f (where the simulation ends) are marked. The vertical
axis of the inset is stretched relative to the main plot to better
bring out the shape of the potential close to the minimum.

−(1 + i kaH )δφ~k. We separate short and long wave-
length modes with a step function in momentum space,
so ξφ and ξπ are white noise, with 〈ξφ(N1)ξφ(N2)〉 =
k3

2π2 (1 + H ′/H)|δφ~k|2|k=σaHδ(N1 − N2), and analogous
correlator for ξπ [86]. The time evolution of φ̄ re-
ceives stochastic kicks at every finite step with variance

〈∆φ̄2〉 = dN k3

2π2 (1+H ′/H)|δφ~k|2|k=σaH , where dN is the
time step of the numerical calculation. As the perturba-
tions are highly squeezed (as we will discuss shortly), the
momentum kicks are strongly correlated with the field
kicks, ∆π̄ = Re(δφ′~k/δφ~k)∆φ̄.

Inflation model.– We consider an inflaton potential
V (φ) where the CMB perturbations are generated at a
plateau, and there is a shallow local minimum at smaller
field values, as shown in Fig. 1. The inflaton starts in SR,
enters USR as it rolls over the minimum, and then returns
to SR until the end of inflation. We consider a model
where the Standard Model Higgs is the inflaton and the
local minimum is produced by quantum corrections [31],
tuned to produce PBHs with massMPBH = 7×10−15M�,
with an abundance that roughly agrees with the ob-
served dark matter density in the Gaussian approxima-
tion. Contrary to [31], here we adjust the plateau by
hand to fit CMB observations [1]. We give the details in
the Supplemental Material. At the CMB pivot scale k∗
the spectral index is ns = 0.966 and the tensor-to-scalar
ratio is r = 0.012.

Squeezing and classicalization.– For the stochastic for-
malism to be valid, the perturbations must be classical
by the time they join the background. Classicality can be
characterized by squeezing of the mode wave functions.
A squeezed state can be written as [46, 94]

|ψ〉 = exp

[
1

2

(
s∗â2 − sâ†2

)]
|0〉 , (5)
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where s = re2iϕ is the squeezing parameter, and â, â†

are standard ladder operators that satisfy
[
â, â†

]
= 1.

They determine the vacuum state, â |0〉 = 0, with respect
to which the squeezing is measured. The amplitude r
indicates how squeezed the state is, and the phase ϕ gives
the squeezing direction in phase space.

Choosing Q~k =
√
kaδφ~k and P~k = a2Hδφ′~k/

√
k for the

canonical variables that define the vacuum, leads to the
Bunch–Davies vacuum for the sub-Hubble modes. The
corresponding operators are related to the ladder opera-
tors in the usual way, and we have〈

ψ~k
∣∣Q̂2

~k
+ P̂ 2

~k

∣∣ψ~k〉 = cosh(2rk) . (6)

The value of rk is then a proxy for classicalization. For
the Bunch–Davies vacuum, the mode initially has the
minimum uncertainty wave packet, for which rk = 0, and
rk grows as the phase space probability distribution gets
squeezed. Large rk implies that the probability distribu-
tion covers a large region in phase space, where the ex-
pectation value of the commutator [Q̂~k, P̂~k′ ] = iδ(~k− ~k′)
is negligible compared to expectation values such as〈
ψ~k
∣∣Q̂~kP̂~k′ + P̂~kQ̂~k′

∣∣ψ~k〉. Thus, all relevant expectation
values can be reproduced by a classical probability dis-
tribution. Squeezing makes the operators Q̂~k and P̂~k
highly correlated, so the field and momentum kicks be-
come approximately proportional to each other. Note
that rk � 1 corresponds to a large occupation number.

Modes get more squeezed as they are pushed further
outside the Hubble radius. The coarse-graining param-
eter σ has to be small enough to ensure that the mode
probability distribution is sufficiently classical. However,
the larger the value of σ, the more interactions between
the short and long wavelength modes we capture. We
choose the value σ = 0.01, for which all modes satisfy
cosh(2rk) > 100 when they exit the coarse-graining scale.

Gauge-dependence.– The perturbation equation of mo-
tion (4) is written in the spatially flat gauge, which is
convenient for calculating the mode functions, whereas
the stochastic equations (1), (2) for the background are
written in the uniform-N gauge, as N does not receive
kicks. As shown in [86], the correction to the mode func-
tions when changing from the flat gauge to the uniform-N
gauge is small both in SR and USR. We have checked nu-
merically that in our calculation this holds at all times,
including during transitions between SR and USR, except
for a small subset of the modes that have little quanti-
tative impact. Gauge difference therefore has negligible
impact on our results.

∆N formalism.– We aim to calculate the coarse-
grained comoving curvature perturbation R in a given
patch of space, since this determines whether the patch
collapses into a PBH. We use the ∆N formalism [93, 95–
97], where R is given by the difference between the num-
ber of e-folds N of the local patch and the mean number
of e-folds N̄ , measured between an initial unperturbed
hypersurface with fixed initial field value φ̄i, and a final

hypersurface of constant field value φ̄f ,

R = N − N̄ ≡ ∆N . (7)

When we solve the stochastic equations, we follow a patch
of size determined by the coarse-graining scale kc = σaH,
which changes in time. The patch size at the end of the
calculation gives the PBH scale we probe; we fix this to
the value kPBH, which we discuss below. To ensure that
kPBH gives the final patch size, we stop the time evolution
of kc once kc = kPBH. After this, no modes from δφ con-
tribute to φ̄: the stochastic noise is switched off, so modes
with larger k do not give kicks. This is a meaningful pro-
cedure as perturbations with wavelengths smaller than
the size of the collapsing region should not affect PBH
formation; they behave as noise that is averaged out in
the coarse-graining process. We continue to evolve the
local background without kicks until the end of inflation,
where the field value is φ̄f . We record the final value of N
for each simulation, and build statistics over many runs
to find the probability distribution P (N). The numerical
algorithm is described in the Supplemental Material.

PBH production.– When a perturbation of wavenum-
ber k re-enters the Hubble radius during the radiation-
dominated phase after inflation, it may collapse into a
black hole of mass

M =
4

3
πγH−3

k ρk ≈ 5.6× 1015γ

(
k

k∗

)−2

M� , (8)

where M� ≈ 2×1033 g, γ ≈ 0.2 is a parameter character-
izing the collapse [98], and Hk and ρk are, respectively,
the background Hubble rate and energy density at Hub-
ble entry. We assume standard expansion history.

The abundance depends on whether the collapse is
computed from a peak analysis or from density threshold
considerations, on how the threshold is chosen and the
mapping between R and the density contrast [28, 98–
115]. To highlight the impact of the stochastic effects
during USR versus the Gaussian approximation, we sim-
ply consider a treatment where the collapse occurs if the
curvature perturbation exceeds the threshold Rc = 1.
The fraction of simulations where R > Rc gives the ini-
tial PBH energy density fraction β. Since PBHs behave
as matter, this fraction grows during radiation domina-
tion, and today it is

ΩPBH ≈ 9× 107γ
1
2 β

(
M

M�

)− 1
2

. (9)

It is often assumed thatR follows a Gaussian distribution
(e.g. [102, 116]), with variance σ2

R =
∫ kPBH

kIR
d(ln k)PR(k),

where kIR is a cutoff corresponding roughly to the size of
the present Hubble radius, and whose precise value makes
no difference to our results. The Gaussian approximation
gives

β = 2

∫ ∞
Rc

dR 1√
2πσR

e
− R2

2σ2R ≈
√

2σR√
πRc

e
− R2

c
2σ2R , (10)
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with the conventional factor of 2 [117]. Our model is
fine-tuned to give a substantial PBH abundance in the
Gaussian approximation. We want to capture all the
strong perturbations generated during USR, so we choose
kPBH = e33.6k∗, which exits the Hubble radius at the end
of USR, and corresponds to M = 7 × 10−15M�. PBHs
of this mass can constitute all of the dark matter [118–
120]. In the Gaussian approximation we obtain σ2

R =
0.0149 and β = 2.7 × 10−16. Using (9) this leads to an
abundance ΩPBH = 0.13. However, we will see below that
this Gaussian approximation severely underestimates the
PBH abundance.

In reality, all PBHs will not have exactly the same
mass. The mass distribution could be estimated by vary-
ing kPBH. However, USR produces a sharp peak in the
perturbations, corresponding to a strongly peaked distri-
bution of PBH masses. To keep the discussion simple,
we stick to the value M = 7× 10−15M�.

Results.– We have run over 1011 simulations (using
over 1 million CPU hours) to find the distribution P (N)
of the number of e-folds between the CMB pivot scale
and the end of inflation, see Fig. 2. The red solid line is
the full numerical result, and the dotted black line is a
Gaussian fit. The deviation from Gaussianity is evident
for |∆N | & 0.5. Although the stochastic kicks push the
field in either direction with equal probability, it is more
likely to spend a longer (rather than shorter) time in the
USR region, because the field slows down there, skewing
∆N towards positive values. The Gaussian fit has vari-
ance σ2

R = 0.0152, close to the Gaussian estimate used
to build the potential, and gives β = 5.3× 10−16.

Our data reaches ∆N = 1, but the region ∆N > 0.95
is poorly sampled. The mean is N̄ = 51.64. We es-
timate that resolving the tail of the distribution beyond
∆N = 1 would require 102 times more simulations, which
translates into ∼100 million CPU hours. The distri-
bution for ∆N & 0.6 is well fit by a single exponen-
tial. The black dashed line in Fig. 2 shows the best-
fit P (N) = eA−BN to the data between ∆N = 0.75
and ∆N = 0.95. A jackknife analysis where we di-
vide our data into 20 subsamples gives the mean values
and error estimates A = 1699 ± 61, B = 32.7 ± 1.2.
The mean and the best-fit are very close. To deter-
mine the PBH abundance, we extrapolate this exponen-
tial beyond the resolved region. As the abundance falls
steeply, the dominant contribution comes from just be-
yond the threshold ∆N = 1. We get the PBH abundance
β = 2

∫∞
N̄+1

dNP (N) = 2B−1eA−B(N̄+1) = 3.4 × 10−11,

which corresponds to ΩPBH = 1.6 × 104. The jackknife
analysis gives 25% errors on these values. The difference
from the Gaussian approximation for the PBH abun-
dance today is a factor ∼ 105. After our results appeared,
the form of P (N) with an exponential tail in stochastic
USR was calculated analytically [121].

The blue dash-dotted line in Fig. 2 shows a simpli-
fied treatment where the modes in the noise are fixed to

51 51.5 52 52.5 53

10−12

10−8

10−4

1

N

P
(N

)

Full

Simplified

Gaussian fit

Exponential fit

−0.5 0 0.5 1

∆N

FIG. 2. The probability distribution for the number of e-folds.
The bottom label indicates the total number of e-folds, the
top label indicates deviation from the mean. The red solid
line is the full result, the black dotted line is a Gaussian fit
to all points, and the black dashed line is an exponential fit
to the tail. The blue dash-dotted line is the simplified case
discussed in the text. The vertical line marks the collapse
threshold ∆N = 1.

their SR super-Hubble limit, |δφ~k| = H/(
√

2k3/2) with
H ′ � H, so the noise is proportional to the Hubble pa-
rameter. (The similarity of this curve with the Gaussian
fit to the full computation for ∆N > 0 is purely acciden-
tal.) This is a usual assumption in stochastic inflation
used from the original work [51] to the most recent stud-
ies [121]. It neglects the non-linear effects we capture in
our simulations, both mode evolution and the stochastic
change of the coarse-grained background on the evolution
of the modes, which makes the process non-Markovian.
Fitting an exponential to the curve and extrapolating
beyond ∆N = 1, the simplified treatment underpredicts
the PBH abundance by three orders of magnitude, un-
derlining the importance of mode evolution in USR.

Conclusions.– Applying the ∆N formalism, we find
that stochastic effects in USR generate an exponential
tail in the probability distribution P (R) of the curvature
perturbation, as generally expected [82, 88]. Consider-
ing a realistic model, tailored to fit CMB observations
and to give roughly the observed dark matter abundance
in PBHs (of mass M = 7 × 10−15M�) in the Gaus-
sian approximation, we find that stochastic effects during
USR increase the PBH abundance today by a factor of
∼ 105. Our results demonstrate that when considering
PBHs seeded during USR, it is crucial to calculate the
shape of the tail of the probability distribution P (R),
instead of simply using the power spectrum PR based
on the assumption that P (R) is Gaussian. Our calcu-
lation serves as a proof of concept that the Gaussian
approximation can underestimate the PBH abundance
by orders of magnitude. Similar behavior is expected in
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any USR scenario, with the quantitative effect depending
on the model. Studying USR scenarios leading to PBHs
with initial mass 5 M�, 1800 M� and 103 kg (to pro-
duce Planck-scale relics), we find an exponential tail in
all cases, and significant discrepancy in the dark matter
abundance with respect to the Gaussian case. We will
report the details of this elsewhere.

As a final remark, we note that our results are sensi-
tive to the value of σ, which gives an offset between the
time a mode exits the Hubble radius and the time it is
coarse-grained, when it ’kicks’ the local background. In
SR, modes freeze to an almost scale-invariant spectrum
at super-Hubble scales, so the stochastic results are
insensitive to the value of σ as long as it is sufficiently
small that modes have stopped evolving [51] (but not too
small [52, 54, 56, 80]). In USR this is not the case, be-
cause the near scale-invariance is lost, and super-Hubble
perturbations can also evolve for longer. The usual
simplified treatment where mode evolution is neglected
is oblivious to this problem. The validity of the choice of
σ (more generally, the form of the stochastic equation)
should be checked with a first principle derivation of the
separation between system and environment in quantum
field theory. While such derivations exist for stochastic
SR inflation, none of the ones with explicit Langevin
equations apply to USR [53–55, 58–64, 67–78, 81, 83].
The dependence on σ suggests that USR may be a more
sensitive probe of decoherence and the quantum nature
of inflationary perturbations than SR.
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