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Unravelling competing orders emergent in doped Mott insulators and their interplay with unconventional
superconductivity is one of the major challenges in condensed matter physics. To explore possible supercon-
ducting state in doped Mott insulator, we study the square-lattice t-J model with both the nearest-neighbor
and next-nearest-neighbor electron hoppings and spin interactions. By using the state-of-the-art density matrix
renormalization group calculation with imposing charge U(1) and spin SU(2) symmetries on the large-scale
six-leg cylinders, we establish a quantum phase diagram including three phases: a stripe charge density wave
phase, a superconducting phase without static charge order, and a superconducting phase coexistent with a weak
charge stripe order. Crucially, we demonstrate that the superconducting phase has a power-law pairing corre-
lation decaying much slower than the charge density and spin correlations, which is a quasi-1D descendant of
the uniform d-wave superconductor in two dimensions. These findings reveal that enhanced charge and spin
fluctuations with optimal doping is able to produce robust d-wave superconductivity in doped Mott insulators,
providing a foundation for connecting theories of superconductivity to models of strongly correlated systems.

Introduction.— To understand the emergence of unconven-
tional superconductivity (SC) is one of the major challenges
of modern physics [1, 2]. Despite intensive studies in the past
30 years, it remains elusive if a robust SC state can emerge in
the electron systems with strong repulsive interaction. Since
the SC phase is usually realized by doping the parent antifer-
romagnetic compounds such as cuprate-based materials, the
Hubbard model and the closely related t-J model are taken as
canonical models for studying SC in strongly correlated sys-
tems [1–5]. Lacking of well controlled analytical solutions
in two dimensions (2D), unbiased computational studies play
an important role in establishing the quantum phases in such
models. So far, the common consensus is that charge and spin
intertwined orders are dominant in lightly doped Hubbard and
t-J models on the square lattice, while SC correlations are rel-
atively weak on wider systems [6–19]. The inconsistency of
these results with the insight from experimental observations,
i.e. a SC “dome” throughout a range of doping parent antifer-
romagnetic compounds, poses a fundamental challenge to our
understanding of strongly correlated electron systems [1, 2].

Intuitively, introducing the next-nearest-neighbor hopping
t2 to the basic Hubbard or t-J models should be more realistic
for describing materials [20–22], which may help to weaken
charge order and enhance SC [7, 17, 23–27]. Specifically,
recent studies of the t1-t2 Hubbard model on the width-4
cylinder observed a quasi-long-range SC correlation [28–30],
which coexists with the power-law charge density correlation
in the form of the Luther-Emery liquid [31–35]. However, a
more recent numerical study suggested that there can be dif-
ferent d-wave symmetries in such a system, and a plaquette
d-wave correlation may be favored on the width-4 cylinder,
which does not represent a true d-wave SC order in the 2D
limit [36]. This work also highlights the importance of going
to wider systems, which is an essential step towards under-
standing the competing orders in the 2D limit.

To make a significant progress towards understanding SC in
2D strongly correlated systems, we study the quantum phases
in lightly doped square-lattice t-J model using the state-of-
the-art density matrix renormalization group (DMRG) [37,
38], and demonstrate a global phase diagram on the width-
6 cylinder by tuning doping level δ and hopping ratio t2/t1.
We identify three distinct phases: a stripe charge density wave
(CDW) phase, a uniform d-wave SC phase, and a SC phase
coexistent with a weak CDW order. The intermediate uniform
SC phase occupies a large portion of the phase diagram upon
increasing doping level. The SC correlation has a power-law
quasi-long-range order with the Luttinger exponent reaching
a small value Ksc ≈ 0.36 and the ordinary d-wave symmetry,
which dominates over other correlations. Crucially, through a
rigorous bond-dimension scaling, we provide compelling ev-
idence that the SC phase is the quasi-1D descendant of a ro-
bust 2D superconductor. These results offer strong evidence
that SC order can overtake the tendency of other orderings in
a doped Mott insulator, based on which we discuss some in-
sight for doping-induced quantum phase transitions and com-
pare with experimental observations in the cuprate systems.

Solving the t-J model with DMRG.— The extended t-J
model is defined as

H = −
∑
{ij},σ

tij(ĉ
†
i,σ ĉj,σ +h.c.) +

∑
{ij}

Jij(Ŝi · Ŝj −
1

4
n̂in̂j),

where ĉ†i,σ and ĉi,σ are the creation and annihilation opera-
tors for the electron with spin σ (σ = ±1/2) at the site i, Ŝi
is the spin-1/2 operator, and n̂i ≡

∑
σ ĉ
†
i,σ ĉi,σ is the elec-

tron number operator. We consider the nearest-neighbor (NN)
and next-nearest-neighbor (NNN) hoppings (t1 and t2) and
interactions (J1 and J2), as shown in Fig. 1(a). We choose
t1/J1 = 3.0, J2/J1 = (t2/t1)2 [30] and focus on the region
with 0 ≤ t2/t1 ≤ 0.32 and hole doping level 1/24 ≤ δ ≤ 1/6
which is the optimal region for the SC in the cuprates [20–22].



2

x

y
J1

J2

-t1

-t2(a)

open boundary

pe
ri

od
ic

 b
ou

nd
ar

y

0 0.1 0.2 0.3
t2 / t1

1/24

1/6

1/8

1/12

ho
le

 d
op

in
g 

ra
tio

 δ

CDW

d-wave SC + CDW

d-wave SC(b)

FIG. 1. Global quantum phase diagram. (a) Schematic plot of the
t-J model on the square lattice, where arrows and circles respec-
tively denote electrons and doped holes. The model has both the
nearest-neighbor and the next-nearest-neighbor hoppings (t1 and t2)
and spin exchange (J1 and J2) interactions. (b) Quantum phase di-
agram of the model obtained on the Ly = 6 cylinder based on the
static charge density pattern shown in Fig. 2. For 0 ≤ t2/t1 ≤ 0.32
and doping level 1/24 ≤ δ ≤ 1/6, we identify a CDW phase, a uni-
form d-wave SC phase, and a coexistent d-wave SC and CDW (SC
+ CDW) phase. The Luttinger exponents of SC pairing and density
correlations cross over between different phases. Momentum distri-
bution functions n(k) for (c) CDW phase, (d) uniform SC phase, and
(e) SC + CDW coexistent phase.

By advancing the DMRG simulations with U(1) × SU(2)
symmetries [39] (also see Supple. Mat. [40]), we study the
system on a cylinder with the periodic boundary conditions
along the circumference direction (y) and the open boundary
along the axis direction (x), where Ly and Lx denote the lat-
tice sites along these two directions. We keep the bond dimen-
sions up to D = 20000 SU(2) multiplets, which is equivalent
to about 60000 U(1) states (it is about double of the previous
standard in the literatures for the t-J model [18, 30]) and thus
allows us to obtain accurate results on the Ly = 6 cylinder
with the truncation error near 1× 10−6 [40].

Quantum phase diagram.— Figure 1 presents the phase di-
agram as a function of t2/t1 and doping level δ based on
comprehensive simulations of cylinder systems with Lx =
48, 64 and Ly = 6. We identify three phases with differ-
ent charge density distributions: a CDW phase (light purple),
a d-wave SC phase without static charge order (red), and a
SC + CDW coexistent phase (green). In the CDW phase,
we identify stripe orders with wavelength λ ' 4/(Lyδ) de-
pending on doping level (Fig. 2(a)), consistent with previous
results [13, 16, 17]. Meanwhile, SC pairing correlations are
weak and become very small at long distance near t2 = 0
(Fig. 3(b)). In the SC phase, we find uniform charge den-
sity without static charge order (Fig. 2(b)), but with a strong
quasi-long-range SC order of the ordinary d-wave symmetry

(Fig. 3(a)). For the coexistent phase, we also find a dominant
quasi-long-range SC order (Fig. 3(b)), which cooperates with
a weak stripe order with wavelength λ ' 2/(Lyδ) (Fig. 2(c)).

The intermediate uniform SC phase is the key finding in this
paper. Interestingly, the window of the d-wave SC phase grad-
ually spans with increasing doping level, inducing the doping-
tuned CDW (or SC + CDW coexistent phase) to a uniform SC
phase transition. As we will discuss below, this picture could
be relevant to experimental observations in cuprates. In the
following, we turn to the identification of these phases.

Charge density wave.— Since the charge density of the
ground state is uniform along the y direction due to trans-
lational symmetry and shows distinct behaviors along the x
direction for different phases, we define the averaged charge
density for each column as nx =

∑Ly

y=1〈n̂x,y〉/Ly and show
the density profiles in Fig. 2. In the CDW phase, we identify
an approximate periodic density modulation with the wave-
length λ ' 4/(Lyδ) doping dependent. For example, at
t2 = 0, δ = 1/12, the density profile has λ ' 8, i.e. each
stripe is filled with four holes (or nhstr = 4 in average, see
Fig. 2(a)). In contrast, in the coexistent phase we find a charge
modulation with λ ' 4 (Fig. 2(c)), which contains two holes
nhstr = 2 in average per stripe, regardless of the doping level.
Thus, a quasi-long-range SC occurs likely in the coexistent
phase as the charge modulation with two holes (nhstr = 2)
may be plausible for pairing [30, 41–43]. Importantly, in ad-
dition to the aforementioned charge ordered phases, we find
a uniform charge density phase with vanishing-small density
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FIG. 2. Charge density profiles. The charge density distributions
nx =

∑Ly

y=1〈n̂x,y〉/Ly on the Lx = 64, Ly = 6 cylinder for (a)
CDW phase, (b) SC phase, and (c) SC + CDW phase. The blue lines
are fitting curves to the function nx = n0 + Acdw cos(Qx + φ),
where Acdw = A0(x

−Kc/2 + (Lx + 1 − x)−Kc/2) and Q are the
CDW amplitude and wave vector, respectively. φ is a phase shift.
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modulation in the bulk of system (see Fig. 2(b)) and [40]).
The absence of static charge order indicates that CDW is very
weak and thus may give the way to a robust SC.

SC pairing correlation and d-wave symmetry.— We exam-
ine the SC by measuring the dominant spin-singlet pairing
correlations Pα,β(r) = 〈∆̂†α(r0)∆̂β(r0 + r)〉, where the pair-
ing operator is defined on two NN sites r1 and r2 = r1 + eα
and ∆̂α(r1) = (cr1↑cr2↓ − cr1↓cr2↑)/

√
2 (eα=x,y denote the

unit lengths along x- and y-direction, respectively). We con-
sider correlation decay along the x direction with distance r.

First, we discuss the SC pairing symmetry by inspecting
the different pairing correlations shown in Fig. 3(a). While
two kinds of the vertical-vertical correlations Py,y (blue, for
two y-bonds in the same chains), P

′′

y,y (red, for two y-
bonds with one relative lattice shift in the y-direction) and
the horizontal-horizontal correlation Px,x (purple) are always
positive, the vertical-horizontal correlations Py,x (green) are
negative. Thus, the pairing order parameters should have the
opposite signs for the x-bond and y-bond, respectively. Fur-
thermore, the pairing term has no phase shift along both di-
rections, showing a conventional d-wave pairing symmetry as
depicted by the inset of Fig. 3(a). In addition, the magnitudes
of the pairing correlations are insensitive to bond orientations,
showing a spatially uniform feature of the SC order. Second,
by tuning t2/t1, the pairing correlations are enhanced and be-
come strong in the SC phase, signaling the developed quasi-
long-range order. Such pairing correlations remain stable for
the larger t2/t1 entering the SC + CDW phase as shown in
Fig. 3(b) for δ = 1/12. Third, in the SC and SC + CDW
phases, we identify that the pairing correlation dominates over
all other competing charge and spin correlations, as evidenced
by Fig. 5 for δ = 1/12, t2/t1 = 0.12 (SC phase) and 0.22 (SC
+ CDW phase). All above features strongly support a robust
d-wave pairing nature in the SC and the SC + CDW phases.

To clarify the presence of quasi-long-range SC order, we
further investigate the decay behavior of pairing correlations
using two different ways. As DMRG method represents the
ground state as a Matrix product state with a finite bond di-
mension, the correlations at long distance usually decay ex-
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FIG. 3. SC pairing correlations. (a) Various kinds of pairing
correlations along different bond directions: vertical-vertical cor-
relation Py,y (blue) and P

′′
y,y (red), horizontal-horizontal correla-

tion Px,x (purple), and vertical-horizontal correlation Py,x (green).
The inset shows the pattern of the d-wave symmetry. (b) Double-
logarithmic plot of the pairing correlations Py,y for different t2/t1 at
δ = 1/12, 1/8.
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FIG. 4. Scaling of correlations in the SC phase. (a) Semi-logarithmic
plot of Py,y obtained by different bond dimensions D. The inset
shows the dependence of the correlation length ξsc on D, where ξsc
is obtained by fitting Py,y ∼ exp(−r/ξsc). In the range of D =
4000 − 20000 (equivalent to U(1) D = 12000 − 60000), ξsc fits
to ξsc ∼ Dα with α = 0.576. (b) Double-logarithmic plot of Py,y
with the same data in the subfigure (a). The dashed crossed line
denotes the power-law fitting of the extrapolated D → ∞ results.
(c) Comparing the pairing correlations on the Ly = 4, 6 cylinders.
(d-f) Similar plots for the density-density correlation function D(r).

ponentially on wider systems [44], which would recover the
true nature of correlations in the infinite bond dimension limit.
Therefore, we first fit the raw data of pairing correlations
for various bond dimensions using the exponential function
Py,y(r) ∼ exp(−r/ξsc), as shown in Fig. 4(a). One can
see that the correlation length ξsc monotonically grows as the
bond dimension increases. We find a power-law dependence
ξsc ∼ Dα (see the inset of Fig. 4(a)) for the bond dimen-
sion up to D = 20000, indicating that ξsc tends to diverge
in the D → ∞ limit and a true quasi-long-range order is ex-
pected. In the second method, the obtained SC correlations
are extrapolated to the D → ∞ limit first [19, 29], using a
second-order polynomial function of 1/D for the data points
of D = 8000 − 20000 (Fig. 4(b)). We find that the extrap-
olated pairing correlations over a wide range of distance col-
lapse to a power-law decay function Py,y(r) ∼ r−Ksc , with
a Luttinger exponent Ksc ≈ 0.36. In Fig. 4(c), we compare
the power-law SC correlations on the Ly = 4 and 6 systems,
which give the exponent Ksc ≈ 0.96 for Ly = 4 and 0.36
for Ly = 6. It is clear that the pairing correlations are signif-
icantly enhanced for Ly = 6 and we find that Ksc < 1 is a
common feature in the SC phase [40]. It signals that the SC
order, which becomes stronger and tends to be stabilized on
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∑
σ c
†
x,σcx+r,σ〉 for (a) SC phase and (b) SC + CDW

phase. The correlations are rescaled to make a direct comparison.

larger system sizes, should survive in the 2D limit. Thus, this
uniform SC state can be regarded as the quasi-1D descendant
of a 2D superconductor [32].

Last but not least, we compare density correlations with SC
pairing correlations. We identify a power-law behavior of den-
sity correlations with a much higher exponent Kcdw ≈ 2.93
(see Fig. 4(d,e)). In Fig. 4(c,f) we show that SC pairing and
density correlations behave differently going from width-4 to
width-6 cylinder: while SC correlations greatly enhance (Ksc

reduces from 0.96 to 0.36), density correlations are strongly
suppressed with Kcdw increasing from 1.4 to 2.93. Notice
that Ksc < 0.5 and Kcdw > 2 imply that the SC susceptibil-
ity diverges whereas the CDW susceptibility remains finite on
the ladder systems [33]. This trend indicates that the SC or-
der may grow stronger with increasing system width, thus we
anticipate a robust uniform SC phase without a CDW instabil-
ity in the 2D limit. Furthermore, we have carefully confirmed
that the single-particle and spin correlations all decay expo-
nentially in the uniform SC phase (see Fig. 5(a) and [40]).

In comparison, in the SC + CDW phase the SC order is
found to cooperate with a weak stripe order, qualitatively con-
sistent with the results of the width-4 Hubbard model or t-J
model [29, 30]. Quantitatively, SC correlations still dominate
all other correlations (see Fig. 5(b)) with the Luttinger expo-
nents Ksc < Kcdw < 2 (see Supple. Mat. [40]).

Fermi surface evolution.— Lastly we measure the elec-
tron distribution function in the momentum space n(k) =∑
i,j,σ〈c

†
i,σcj,σ〉eik·(ri−rj)/(LxLy) to study the evolution of

electronic structure. We identify that the normal and SC
phases have distinct topologies of n(k): In the normal CDW
phase (Fig. 1(c)), the size of the electron pocket near the
Γ = (0, 0) point expands eventually covering a large portion
of the Brillouin zone with a clear nematic distortion of Fermi
surface from the unidirectional stripe order. In the SC and SC
+ CDW phases (Fig. 1(d-e)), electronic states form a closed
Fermi surface with approximate C4 symmetry and an isolated
electron pocket centers around the Γ point. Such a change of
the Fermi surface topology is robust for all doping levels [40].

We conjecture that the Fermi surface topology may be related
to the emergence of quantum criticality between the CDW and
SC phase, which we leave for future study.

Summary and Discussion.— We have presented a compre-
hensive study of a doped Mott insulator by further advanc-
ing the state-of-the-art DMRG computations, which allows
us to identify a robust superconductivity on wider cylindri-
cal systems. We map out a global phase diagram in terms
of doping level and the NNN electron hopping strength. We
identify two SC phases, either with or without a static CDW
order. The remarkable result found on the wider system is
that, by suppressing charge and spin orders, a uniform SC
phase with the ordinary d-wave pairing symmetry emerges.
We carefully established that the SC pairing correlation is the
strongest correlation with robust quasi-long-range order and
a small power exponent. The density correlations also decay
with a power-law behavior, but has a large exponent, indicat-
ing a special limit of Luther-Emery liquid where the CDW
correlations cannot compete with the SC correlations. Such a
uniform d-wave SC state has been sought for decades, and the
current numerical identification provides convincing evidence
for the emergent of such a state in strongly correlated electron
systems with only repulsive interactions.

As the width-6 system has reduced ring and plaquette cor-
relations around the cylinder [36], it may be a better repre-
sentation of 2D system. Intuitively, our phase diagram on the
6-leg system turns out to resemble the essential features of
the cuprate compounds [2]. For instance, upon increasing the
hole doping level, two different possibilities could occur: the
system could be driven from the normal state to a uniform SC
phase directly, or it could first go into a SC + CDW coexis-
tent phase and then it takes another transition into a uniform
SC state. This picture provides an intuitive understanding that
CDW order often but not always appears in the underdoped
regime with the onset of superconductivity, which may de-
pend on the ratio t2/t1 and other properties of materials.
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Note added.— At the final stage of preparing this work, we
notice an arXiv preprint focusing on larger positive t2 regime
[45] and another preprint studying the phase diagram with
both negative and positive t2 [46]. The superconducting state
found in Ref. [45] has the similar pairing correlation and den-
sity correlation power exponents as those in our SC + CDW
state. The enhanced spin correlations with growing system
circumference in the SC + CDW phase also agree with the
observation in Ref. [46] in the same parameter region.
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