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We have performed density-matrix renormalization group studies of a square lattice t-J model
with small hole doping, δ � 1, on long 4 and 6 leg cylinders. We include frustration in the form of
a second-neighbor exchange coupling, J2 = J1/2, such that the undoped (δ = 0) “parent” state is
a quantum spin liquid. In contrast to the relatively short range superconducting (SC) correlations
that have been observed in recent studies of the 6-leg cylinder in the absence of frustration, we find
power law SC correlations with a Luttinger exponent, Ksc ≈ 1, consistent with a strongly diverging
SC susceptibility, χ ∼ T−(2−Ksc) as the temperature T → 0. The spin-spin correlations - as in the
undoped state - fall exponentially suggesting that the SC “pairing” correlations evolve smoothly
from the insulating parent state.

Although the physics of the cuprate high temperature
superconductors is surely complex, there are a variety of
reasons[1–3] to believe that the “essential”[4] physics is
captured by the two-dimensional (2D) Hubbard model
or its close relatives. To begin with, as is the case in the
cuprates, in an appropriate regime of parameters, the
Hubbard model on a square lattice with n = 1 electrons
per site exhibits an undoped “parent” state that is a Mott
insulating antiferromagnet. However, two key theoretical
issues concerning this proposition remain unsettled: 1)
Does d-wave superconductivity (SC) “robustly” arise in
this model upon light doping, i.e. for 0 < δ ≡ (1−n)� 1.
2) If so, how does it arise (i.e. what is the “mechanism”)
and under what circumstances (e.g. does it depend on
specific features of the band structure)?

For parametrically small values of the Hubbard U �
W (where W is the bandwidth), it is possible to
establish[5] that such a superconducting state arises, but
here (except under extremely fine tuned circumstances in
which the Fermi surface is perfectly nested) the undoped
state at n = 1 is also superconducting, and the super-
conducting Tc is exponentially small in units of W . For
intermediate U ∼ W , no controlled analytic approach
exists, but calculations based on a variety of physically
motivated approximations [6–8] yield results suggestive
of values of Tc as large as Tc ∼ W (where the propor-
tionality is a number of order 1 but may be small, e.g.
∼ (2π)−2). This was further supported by density-matrix
normalization group (DMRG) studies of the Hubbard
and t-J models on 4-leg square cylinders.[9–13] How-
ever, recent[14] DMRG calcualtions on 6-leg square cylin-
ders, as well as variational Monte Carlo[15] calculations
on 2D models, have called this proposition into ques-
tion. Specifically, the tendency of a doped antiferromag-
net to phase separation[15, 16] or to charge-density wave
(CDW) formation[11, 13, 14, 17–21] appear to play a
much more dominant role in the physics at small δ than
accounted for by most approximate approaches.

One attractive notion that was suggested early on

is that high temperature superconductivity could arise
naturally[1, 22–27] under circumstances in which the in-
sulating parent state is a quantum spin liquid (QSL)
rather than an ordered antiferromagnet. In particu-
lar, a QSL with a gap (even a partial gap with nodes),
can in some sense be thought of as a state with pre-
existing Cooper pairs but with vanishing superfluid stiff-
ness. Then, upon light doping, one might naturally ex-
pect SC with a gap scale that is inherited from the QSL
(i.e. evolves continuously as δ → 0) and with a superfluid
stiffness - that rises with δ.

In the present paper, we explore the possibility of SC in
a doped spin liquid using DMRG to treat the t-J model
(a proxy for the Hubbard model) on cylinders of circum-
ference 4 and 6. A number of studies of the spin-1/2
Heisenberg model on the square lattice with first and
second neighbor exchange couplings, J1 and J2, have led
to a consensus[28–35] that there is a QSL phase in the
range of 0.46 < J2/J1 < 0.52.[35] In this range, DMRG
on cylinders of circumference up to Ly = 10 show a pro-
nounced spin-gap and exponentially falling spin-spin cor-
relations with a correlation length ξs considerably smaller
than Ly.[30, 32] However, there is still some debate about
whether this gap persists in the 2D limit, or if instead the
QSL phase has a gapless nodal spinon spectrum.

Here, we study the model with J2/J1 = 0.5, and
correspondingly we take the ratio of nearest to next-
nearest neighbor hopping matrix elements, t2/t1 = 0.7 ≈√
J2/J1, and a value of J1/t1 = 1/3 corresponding

loosely to a value of U ≈ 4t2/J = 12t. On the cylinders
we study, the undoped system is fully gapped, so effec-
tively corresponds to a compactified version of a gapped
Z2 spin liquid of the sort that arises in the quantum
dimer model[36, 37] and the toric code model[38]. Upon
lightly doping we find a state which still shows expo-
nentially falling spin-spin correlations, with correlation
lengths that are longer than but of the same order as in
the undoped system. Most importantly, we find that even
at the smallest δ and on our largest 6-leg cylinders, the
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SC correlations are strong and decay with a slow power
law, ∼ |r|−Ksc , with Ksc ≈ 1. This slow decay implies
a SC susceptibility that diverges as χsc ∼ T−(2−Ksc) as
T → 0. As far as we know, to date, this is the strongest
indication of SC that has been found in any DMRG study
of a system on the square lattice of width Ly > 4. More-
over, the SC correlations dominate over the CDW corre-
lations in the sense that in all cases Kc > Ksc. This is
suggestive that SC order is realized in the 2D limit, al-
though given that in all cases the CDW correlations are
substantial, this inference remains speculative.

Model and Method: We employ DMRG[39] to
study the ground state properties of the hole-doped t-
J model on the square lattice, which is defined by the
Hamiltonian

H = −
∑
ijσ

tij

(
ĉ†iσ ĉjσ + h.c.

)
+
∑
ij

Jij

(
~Si · ~Sj −

n̂in̂j
4

)
.

Here ĉ†iσ (ĉiσ) is the electron creation (annihilation) op-

erator on site i = (xi, yi) with spin polarization σ, ~Si
is the spin operator and n̂i =

∑
σ ĉ
†
iσ ĉiσ is the electron

number operator. The electron hopping amplitude tij is
equal to t1 (t2) if i and j are NN (NNN) sites. J1 and
J2 are the spin superexchange interactions between NN
and NNN sites, respectively. The Hilbert space is con-
strained by the no-double occupancy condition, ni ≤ 1.
At half-filling, i.e., ni = 1, H reduces to the spin-1/2
antiferromagnetic J1-J2 Heisenberg model.

We take the lattice geometry to be cylindrical with
periodic and open boundary conditions in the ŷ and x̂
directions, respectively. Here ŷ = (0, 1) and x̂ = (1, 0) are
the two basis vectors of the square lattice. Here, we focus
on cylinders with width Ly and length Lx, where Lx and
Ly are the number of sites along the x̂ and ŷ directions,
respectively. The total number of sites is N = Lx × Ly,
the number of electrons Ne, and the doping level of the
system is defined as δ = Nh/N , where Nh = N − Ne
is the number of doped holes relative to the half-filled
insulator with Ne = N . In the present study, we focus
on Ly = 4 cylinders of length up to Lx = 128 and Ly = 6
cylinders of length up to Lx = 48, and for values of δ =
1/18, 1/16, and 1/12. We set J1=1 as an energy unit
and J2 = 0.5 such that the undoped system is deep in
the QSL phase at half-filling.[28, 30, 32, 35] We consider
t1 = 3 and t2 = t1

√
J2/J1 to make a connection to

the corresponding Hubbard model. We perform up to
90 sweeps and keep up to m = 10000 states for Ly = 4
cylinders with a typical truncation error ε < 10−7, and
up to m = 40000 states for Ly = 6 cylinders with a
typical truncation error ε < 10−6. Further details of the
numerical simulation are provided in the Supplemental
Material (SM).[40]

Superconducting pair-field correlations: We
have calculated the equal-time spin-singlet SC pair-field
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FIG. 1. (Color online) Superconducting pair-field correlations
Φyy(r) on double-logarithmic scales for (A) Ly = 4 cylinders
at δ = 1/12 and δ = 1/16, and (B) Ly = 6 cylinders at
δ = 1/12 and δ = 1/18. r is the distance between two Cooper
pairs in the x̂ direction. The dashed lines denote power-law
fitting to Φyy(r) ∼ r−Ksc .

correlation function

Φαβ(r) =
1

Ly

Ly∑
y=1

|〈∆†α(x0, y)∆β(x0 + r, y)〉|. (1)

∆†α(x, y) = 1√
2
[ĉ†(x,y),↑ĉ

†
(x,y)+α,↓ + ĉ†(x,y)+α,↑ĉ

†
(x,y),↓] is the

spin-singlet pair creation operator on bond α = x̂ or ŷ,
where (x0, y) is a reference bond taken as x0 ∼ Lx/4 and
r is the displacement between bonds in the x̂ direction.

Fig.1 shows Φyy(r) for both Ly = 4 and Ly = 6 cylin-
ders at different doping levels. At long distance, Φ(r) is
characterized by a power-law with the appropriate Lut-
tinger exponent Ksc defined by

Φ(r) ∼ r−Ksc . (2)

The exponentKsc, which is obtained by fitting the results
using Eq.(2), is Ksc = 1.08(4) for δ = 1/12 and Ksc =
0.95(2) for δ = 1/16 on Ly = 4 cylinders, and Ksc =
1.26(7) for δ = 1/12 and Ksc = 1.14(5) for δ = 1/18 on
Ly = 6 cylinders. This establishes that the lightly doped
QSL on both Ly = 4 and Ly = 6 cylinders has quasi-
long-range SC correlations. In addition to Φyy(r), we
have also calculated components of the tensor – Φxx(r)
and Φxy(r) – and find that Φxx(r) ∼ Φyy(r) ∼ −Φxy(r).
In short, the SC correlations have a d-wave form.

CDW correlations: To measure the charge or-
der, we define the rung density operator n̂(x) =
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FIG. 2. (Color online) Charge density profiles n(x) for (A)
Ly = 4 cylinders at δ = 1/12 and δ = 1/16, and (B) Ly = 6
cylinders at δ = 1/12 and δ = 1/18. The exponent Kc is
extracted using Eq.(3), with the data points in grey neglected
to minimize boundary effects.

L−1y
∑Ly

y=1 n̂(x, y) and its expectation value n(x) =
〈n̂(x)〉. Fig.2A shows the charge density distribution
n(x) for Ly = 4 cylinders, which is consistent with “half-
filled charge stripes” with wavelength λ = 1/2δ. This
corresponds to an ordering wavevector Q = 4πδ corre-
sponding to half a doped hole per 2D unit cell, i.e. view-
ing the cylinder as a 1D system, 2 holes per 1D unit cell.
The charge density profile n(x) for Ly = 6 cylinders is
shown in Fig.2B, which has wavelength λ = 1/3δ, consis-
tent with “third-filled” charge stripes. This corresponds
to an ordering wavevector Q = 6πδ and one third of a
doped hole per 2D unit cell - again corresponding to 2
holes per 1D unit cell.

At long distance, the spatial decay of the CDW cor-
relation is dominated by a power-law with the Luttinger
exponent Kc. The exponent Kc can be obtained by fit-
ting the charge density oscillations (Friedel oscillations)
induced by the boundaries of the cylinder[41]

n(x) = n0 +AQ ∗ cos(Qx+ φ)x−Kc/2. (3)

Here AQ is an amplitude, φ is a phase shift, n0 = 1 − δ
is the mean density, and Q = 4πδ. Note that a few
data points (Fig.2A and B, light grey color) are excluded
to minimize the boundary effect and improve the fitting
quality. The extracted exponents for Ly = 4 cylinders
are Kc = 1.29(3) when δ = 1/12 and Kc = 1.37(3) when
δ = 1/16. For Ly = 6 cylinders, Kc = 1.42(5) when
δ = 1/12 and Kc = 1.55(5) when δ = 1/18. Similarly,
Kc can also be obtained from the charge density-density
fluctuation correlation which gives qualitatively consis-
tent results (see SM).
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FIG. 3. (Color online) Spin-spin correlations F (r) for Ly = 6
cylinders at δ = 0, δ = 1/12 and δ = 1/18 on the semi-
logarithmic scale. Dashed lines denote exponential fit F (r) ∼
e−r/ξs , where r is the distance between two sites in the x̂
direction. Inset: Spin gap ∆s for Ly = 6 cylinders at δ = 0
and δ = 1/12. Solid lines denote second-order polynomial
fitting.

Spin-spin correlations: To describe the magnetic
properties of the ground state, we calculate the spin-spin
correlation functions defined as

F (r) =
1

Ly

Ly∑
y=1

|〈~Sx0,y · ~Sx0+r,y〉|. (4)

Fig.3 shows F (r) for Ly = 6 cylinders at different dop-
ing levels, which decays exponentially as F (r) ∼ e−r/ξs

at long-distances, with a correlation length ξs = 3.98(1)
lattice spacings for δ = 1/12 and ξs = 3.06(2) lattice
spacings for δ = 1/18. For comparison, the spin-spin
correlation F (r) at half-filling, i.e., δ = 0, is also shown,
which decays exponentially with a correlation length ξs =
1.42(1). Therefore, the spin-spin correlations at finite
doping levels are short-ranged and similar to those of the
QSL at half-filling. In the inset of Fig.3, we show the spin
gap, defined as ∆s = E0(Sz = 1) − E0(Sz = 0), where
E0(Sz) is the ground state energy of a system with total
spin Sz. At half-filling, i.e., δ = 0, ∆s = 0.40(1) which
is consistent with previous studies.[30, 32] At δ = 1/12,
∆s = 0.24(1), which is consistent with the short-range
nature of F (r).

Single particle Green function: We have also cal-
culated the single-particle Green function, defined as

G(r) =
1

Ly

Ly∑
y=1

〈c†(x0,y),σ
c(x0+r,y),σ〉. (5)

Fig.4 shows G(r) for both Ly = 4 and Ly = 6 cylinders
at different doping levels, the long distance behavior of
G is consistent with exponential decay G(r) ∼ e−r/ξG .
The extracted correlation lengths for Ly = 4 cylinders
are ξG = 30(2) when δ = 1/12 and ξG = 18(1) when
δ = 1/16, while for Ly = 6 cylinders, ξG = 21(1) when
δ = 1/12 and ξG = 20(2) when δ = 1/18.
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FIG. 4. (Color online) Single-particle Green function G(r)
for (A) Ly = 4 cylinders at δ = 1/12 and δ = 1/16, and
(B) Ly = 6 cylinders at δ = 1/12 and δ = 1/18 on the
semi-logarithmic scale. Dashed line denote exponential fitting
G(r) ∼ e−r/ξG where r is the distance between two sites in
the x̂ direction.
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FIG. 5. (Color online) Hole momentum distribution function
nh(kx, ky) for Ly = 4 cylinders at (A) δ = 1/12 and (B)
δ = 1/16, and Ly = 6 cylinders at (C) δ = 1/12 and (D)
δ = 1/18 at different ky as a function of kx in unit of π.

We have also measured the hole momentum distribu-
tion function defined as

nh(k) =
1

2

[
2−

∑
σ

nσ(k)

]
. (6)

Here nσ(k) = 1
N

∑
ij e

ik·(ri−rj)〈ĉ†iσ ĉjσ〉 is the electron
momentum distribution function for electron with spin-σ.
Fig.5 shows nh(k) for both Ly = 4 and Ly = 6 cylinders
at different doping levels. Not surprisingly, there are no
clear discontinuities in nh(k) of the sort that would be
expected at the Fermi momenta of a Fermi liquid.

However, there are sharp drops in nh(k) (which can
be identified as maxima of

∣∣dnh(k)/dkx
∣∣) (See SM for

details) that are suggestive of the “near existence” of
a Fermi surface. These features are most prominent
for ky = 0, where they occur at kx ≈ π ± k0, but
there are slightly broader features of the same general
sort for ky = π, at kx = ±kπ. For Ly = 4 and
δ = 1/16, k0 = 0.075π and kπ = 0.175π; for Ly = 4
and δ = 1/12, k0 = 0.175π and kπ = 0.192π; for Ly = 6
and δ = 1/18, k0 = 0.17π and kπ = 0.18π; for Ly = 6
and δ = 1/12, k0 = 0.25π and kπ = 0.25π. Within
the numerical uncertainty, there is a direct relation be-
tween these quasi-Fermi momenta and the CDW order-
ing vector: Q = 2(k0 + kπ). Moreover, since Q = πLyδ,
this corresponds to the expected value of 2kF that would
correspond to the “volume” of the Fermi surface under
conditions (not satisfied in the present case) in which
Luttinger’s theorem applies.

Conclusion: There is necessarily a speculative leap
from results on finite cylinders to the 2D limit. However,
we feel that the present results - and those of a similar
study by one of us on the triangular lattice t-J model
on 4 and 6 leg cylinders[42, 43] - can plausibly be taken
as representative of the solution of the corresponding 2D
problem. In particular, they support the proposition that
SC can emerge upon light doping of a QSL.[44]

Conversely, our earlier observation of an insulating
holon crystal in a lightly doped Kagome system[45, 46]
and CDW order in a lightly doped honeycomb Kiatev
spin liquid[47] imply that SC is not the universal result
of doping a QSL. Indeed, for otherwise identical cylinders
to those reported above, reversing the sign of t2 (i.e. tak-
ing t2 = −t1

√
J2/J1) reduces the long distance SC cor-

relations by many orders of magnitude although whether
some weak SC power-law correlations persist is still un-
settled. Moreover, we have also found greatly enhanced
SC correlations on 4 and 6 leg cylinders with a spatially
modulated (“striped”) version of the square-lattice Hub-
bard model[48]; it thus may be aspects of doping a quan-
tum paramagnet (i.e. a system in which quantum fluc-
tuations are sufficient to destroy magnetic order) rather
than specific features of a doped QSL that is responsible
for the strong SC tendencies.

It is harder still to make inferences about Tc itself in the
2D limit. The large values of the spin-gaps, ∆s ∼ J/4,
are suggestive that pairing is sufficiently strong to persist
to very high T . It is therefore likely that Tc is determined
by the phase ordering scale,[49] in other words that the
zero temperature superfluid stiffness and hence Tc itself
rise roughly linearly with δ for δ � 1.[22]

Note added: We have become aware of two independent
but closely related DMRG studies of the t-t′-J model by
Gong, Zhu, and Sheng[50] (GZS) and Jiang, Scalapino,
and White[51] (JSW). Both report results for 6 leg cylin-
ders, while JSW also have results for 8 leg cylinders.
Both studies investigated t′ in the range 0 ≤ t′ ≤ 0.3t
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- i.e. neither include the large value t′ = t/
√

2 stud-
ied here. JSW also studied negative t′ - the sign that
is thought to be relevant to the hole-doped cuprates -
in the range −0.3t ≤ t ≤ 0. Overall, the two papers
agree that increasing (positive) t′ tends to increase the
tendency to d-wave SC order and decrease the tendency
to various sorts of competing SDW and CDW orders,
which also correlates well with our observations at larger
t′. Conversely, JSW find that negative t′ strengthens
stripe order and depresses SC order, consistent with our
already mentioned failure to find strong SC tendencies
for t′ = −t/

√
2. One should notice, however, that there

are significant differences in other aspects of the inferred
phase diagrams reported by GZS and JSW - which likely
reflects the delicate nature of the phase competition be-
tween multiple phases that occurs in the range of t′ and
doping they have explored.
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