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We propose to create and stabilize long-lived macroscopic quantum superposition states in atomic
ensembles. We show that using a fully quantum parametric amplifier can cause the simultaneous
decay of two atoms, and in turn create stabilized atomic Schrödinger cat states. Remarkably, even
with modest parameters these intracavity atomic cat states can have an extremely long lifetime,
up to four orders of magnitude longer than that of intracavity photonic cat states under the same
parameter conditions, reaching tens of milliseconds. This lifetime of atomic cat states is ultimately
limited to several seconds by extremely weak spin relaxation and thermal noise. Our work opens
up a new way towards the long-standing goal of generating large-size and long-lived cat states, with
immediate interests both in fundamental studies and noise-immune quantum technologies.

Introduction.—Schrödinger cat states, which are
macroscopically-distinct superposition states, express
the essence of quantum mechanics. Such states
are appealing not only for fundamental studies of
quantum mechanics [1, 2], but also for wide applications
ranging from quantum metrology [3, 4] to quantum
computation [5–9]. So far, a large number of
approaches [10–24] have been proposed to generate cat
states. However, these cat states (especially of large
size) are extremely fragile in a noisy environment, and
their fast decoherence makes them no longer practical
for applications. Thus, the ability to stabilize cat states,
as an essential prerequisite for their various applications,
is highly desirable. To address this problem, two-
photon loss has been engineered [25–28], and recently
experimentally demonstrated [29–33]. Such a nonlinear
loss can protect cat states against photon dephasing [28,
34]; but, unfortunately, not against the unavoidable
single-photon loss. This implies a significantly limited
cat-state lifetime. Single-photon loss has been considered
to be the major source of noise in fault-tolerant quantum
computation based on cat states [5–9]. Thus, the
stabilization of large-size cat states for a long time
remains challenging.

Ensembles of atoms or spins have negligible spin
relaxation, and instead their major source of noise is spin
dephasing, i.e., collective dephasing, local dephasing,
and inhomogeneous broadening. This motivates us to
engineer the simultaneous decay of two atoms of an
ensemble (here denoted as two-atom decay), and then
use it to stabilize atomic cat states. Such cat states could
have a very long lifetime since the two-atom decay can
protect them against spin dephasing, in close analogy
to the mechanism of using two-photon loss to suppress

photon dephasing.

To implement the two-atom decay that is still
lacking and fundamentally different from two-photon
loss, here we propose to exploit fully quantum degenerate
parametric amplification. More importantly, the lifetime
of the resulting atomic cat states can be made longer, by
up to four orders of magnitude, than that of common
intracavity photonic cat states (see Table I in [35]),
i.e., equal superpositions of two opposite-phase coherent
states. To ensure a fair comparison, these photonic cat
states need to have the same size as our atomic cat states
and also suffer from single-photon loss of the same rate
as given for the signal mode. With a modest cavity
decay time (∼ 16 µs), our cat state lifetime can reach
∼ 20 ms. This is comparable to 17 ms [36], which is
the longest lifetime of intracavity photonic cat states to
date, but which was achieved with an extreme cavity
decay time (∼ 0.13 sec). As the cavity decay time
increases, our cat state lifetime can further increase and
ultimately is limited to a maximum value determined
by spin relaxation and thermal noise. For a typical
spin relaxation time ∼ 40 sec [37, 38], we can predict
a maximum cat state lifetime of ∼ 3 sec.

Physical model.—The central idea is illustrated
in Fig. 1(a). To consider degenerate parametric
amplification in the fully quantum regime, our system,
inspired by recent experimental advances [30–32, 39, 40],
contains two parametrically coupled cavities: one as a
pump cavity with frequency ωp and the other as a signal
cavity with frequency ωs. We assume that the pump
cavity is subject to a coherent drive with amplitude Ω
and frequency ωd. The intercavity parametric coupling
J stimulates the conversion between pump single photons
and pairs of signal photons. Furthermore, an ensemble of



2

pump cavity
signal cavity

 qω  g

 J

 sκ pκ

sω

pω

 00 2
 10 0

0 1000

 00 0

0 400
0

2

4

6

er
ro

r0

1

pr
ob

ab
lit

y

0

1

pr
ob

ab
lit

y

(b)

(c)

(d)
10-1X

(a)

, dωΩ

one
pump

photon

two
 excited 

atoms

pump photon jump

zero 
excitation

FIG. 1. (a) Schematic setup of our proposal. The pump and signal cavities are coupled via a parametric coupling J , and the
atomic ensemble is coupled to the signal cavity with a single-atom coupling g. The pump cavity is subject to a coherent drive
with amplitude Ω and frequency ωd. Here, ωp, ωs are the resonance frequencies of the pump and signal cavities, κp, κs are
their respective single-photon loss rates, and ωq is the atomic transition frequency. (b, c) Quantum Monte-Carlo trajectory
pictured through the probabilities of the system being in the states |mp0〉|n〉. Initially, only two atoms in the ensemble are
excited. Here, κp = 0.2χ and κs = Ω = 0. (d) Time evolution of the preparation error η for a cat size |α|2 = 1. Here, κp = 5χ,
κs = 0.3κp, and the ensemble is initialized in the ground state |0〉, the single-excitation state |1〉, and a spin coherent state

|θ0, 0〉 with
√
N tan (θ0/2) = 1, for the states |C+〉, |C−〉, and ρssens, respectively. In (b)-(d), we assume that N = 100, J = 3gcol,

and both cavities are initialized in the vacuum.

N identical two-level atoms is placed in the signal cavity,
and the atomic transition, of frequency ωq, is driven by a
coupling g to the signal photon. When 2ωq ≈ ωp � 2ωs,
a pair of excited atoms can jointly emit a pump photon.
The subsequent loss of the pump photon gives rise to
the two-atom decay, which in turn stabilizes large-size,
extremely long-lived cat states in the ensemble.

The system Hamiltonian in a frame rotating at ωd is

H =
∑
i=p,s

δia
†
iai + δqSz + J

(
apa
†2
s + a†pa

2
s

)
+ g

(
asS+ + a†sS−

)
+ Ω

(
ap + a†p

)
, (1)

where ap, as are the annihilation operators for the pump
and signal modes, S± = Sx ± iSy, δp = ωp − ωd, δs =
ωs − ωd/2, and δq = ωq − ωd/2. The collective spin

operators are Sα = 1
2

∑N
j=1 σ

α
j , with σαj (α = x, y, z) the

Pauli matrices for the jth atom. The Lindblad dissipator,
L (o) ρ = oρo† − 1

2o
†oρ− 1

2ρo
†o, describes the dissipative

dynamics determined by

ρ̇ = −i [H, ρ] +
∑
i=p,s

κiL (ai) ρ, (2)

where κp and κs are the photon loss rates of the pump
and signal modes. Spin dephasing, spin relaxation, and
thermal noise are discussed below.

We assume that 2ωq ≈ ωp ≈ ωd, and the detuning

∆ = ωs − ωq � {gcol, J}. Here, gcol =
√
Ng represents

the collective coupling of the ensemble to the signal
mode. Then, we can predict a parametric coupling,
χ = g2colJ/∆

2, between atom pairs and pump single
photons. Accordingly, the Hamiltonian H, after time
averaging [41, 42], becomes

Havg =
χ

N

(
apS

2
+ + a†pS

2
−
)

+ Ω
(
ap + a†p

)
, (3)

which describes a third-order process. The stronger
second-order process has been eliminated with an
appropriate detuning between ωp and 2ωq (see [35]).
To derive Havg, we have considered the low-excitation
regime, where the average number of excited atoms is
much smaller than the total number of atoms.

We now adiabatically eliminate the pump mode ap,
yielding an effective master equation

ρ̇ens = − i [Hens, ρens]

+
κ1at
N
L (S−) ρens +

κ2at
N2
L
(
S2
−
)
ρens, (4)

where Hens = iχ2at

(
S2
− − S2

+

)
/N , and ρens represents

the reduced density matrix of the ensemble. Here,
κ2at = 4χ2/κp and χ2at = 2Ωχ/κp are the rates of
the simultaneous decay and excitation of two atoms,
respectively. Moreover, κ1at = (gcol/∆)

2
κs is the rate

of the Purcell single-atom decay (see [35]), and we can
tune it to be � κ2at, as long as κs � (gcolJ/∆)2/κp.

We note that the methods of Refs. [43–45] can lead
to a Hamiltonian formally similar to Havg. However,
contrary to our method, the two-atom decay cannot be
realized in those methods assuming the strong cavity-
photon loss. This is because those methods require a
virtual cavity photon to mediate a third-order process,
which indicates that the cavity-photon loss cannot be
allowed to be strong; moreover, they also depend on
a longitudinal coupling, which cannot be collectively
enhanced in atomic ensembles.

To gain more insights into the engineered two-atom
decay, we use the quantum Monte Carlo method [46]. In
Figs. 1(b, c) we plot a single quantum trajectory with
the Hamiltonian H and an initial state |00〉|2〉 (see [35]
for more cases). Here, the first ket |mpms〉 (mp,ms =
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FIG. 2. (a) Time evolution of the preparation error η of the states |C+〉, |C−〉, and ρssens under the bosonic approximation for
different cat sizes |α|2 = 2, 4, and 6. The initial states are chosen as in Fig. 1(d). (b) Wigner function at times t1, . . . , t5 shown
on top of panel (a) for the |α|2 = 4 cat size. The first, second, and third rows correspond to the states |C+〉, |C−〉, and ρssens,
respectively. For all plots, we set J = 3gcol, δp = J2/ (20gcol), κp = 5χ, and κs = 0.3κp.

0, 1, 2, . . .) in the pair refers to the cavity state with mp

pump photons and ms signal photons, and the second
|n〉 (n = 0, 1, 2, . . .) refers to the collective spin state
|S = N/2,mz = −N/2 + n〉, corresponding to n excited
atoms in the ensemble. The non-Hermitian Hamiltonian
HNH = H − i

2κpa
†
pap drives Rabi oscillations between

|00〉|2〉 and |10〉|0〉, as shown in Fig. 1(b). The Rabi
oscillations are then interrupted by a quantum jump ap.
We find from Fig. 1(c) that the jump leaves the system
in its ground state |00〉|0〉, implying that single-photon
loss of the pump mode causes the two-atom decay.

Stabilized manifold of atomic cat states.—When κ1at =
0, the dynamics of the effective master equation
in Eq. (4) describes a pairwise exchange of atomic
excitations between the ensemble and its environment,
thus conserving the excitation-number parity. As
demonstrated in [35], the ensemble is driven to an even
cat state |C+〉 = A+ (|θ, φ〉+ |θ, φ+ π〉) if initialized
in an even parity state, or to an odd cat state
|C−〉 = A− (|θ, φ〉 − |θ, φ+ π〉) if initialized in an odd
parity state. Here, |θ, φ〉, where φ = π/2 and θ =
2 arctan(|α| /

√
N), refers to a spin coherent state, and

A± = 1/{2[1± exp(−2 |α|2)]}1/2. Moreover, α = i
√

Ω/χ
is the coherent amplitude. The average number of excited
atoms, |α|2, of the states |C±〉 characterizes the cat
size [36]. When assuming the initial state to be a spin
coherent state |θ0, φ0〉, the steady state of the ensemble is
confined into a quantum manifold spanned by the states
{|C+〉, |C−〉}, and is expressed as ρssens = c++|C+〉〈C+| +
c−−|C−〉〈C−| +c+−|C+〉〈C−|+c∗+−|C−〉〈C+|, where c++ =
1
2 [1 + exp(−2 |α0|2)] with α0 =

√
N exp (iφ0) tan (θ0/2),

c−− = 1−c++, and c+− is given in [35]. To confirm these
predictions, we numerically integrate [47, 48] the master
equation in Eq. (2) to simulate the time evolution of the

preparation error η = 1− F in Fig. 1(d). Here, F is the
fidelity between the actual and ideal states. It is seen
that, as expected, the ensemble states are steered into a
stabilized 2D cat-state manifold with a high fidelity.

In the low-excitation regime considered above, the
collective spin in fact behaves as a quantum harmonic
oscillator. This allows us to map S− to a bosonic
operator b, i.e., S− ≈

√
Nb, and thus to investigate cat

states of large size (|α| > 2) in large ensembles. The
spin coherent state |θ, φ〉 accordingly becomes a bosonic
coherent state |α〉, such that the states |C±〉 become
|C±〉 = A± (|α〉+ | − α〉). With the master equation
in Eq. (2) and under the bosonic approximation, we
plot the time evolution of the preparation error η in
Fig. 2(a), and the Wigner function W (β) for different
times in Fig. 2(b). We find that a cat state of size

|α|2 = 4 is obtained after time t ∼ 250/gcol, or more
specifically, t ∼ 4 µs, for a typical collective coupling
strength gcol/2π = 10 MHz [37, 49–52].

Suppressed spin dephasing.— So far, we have assumed
a model where there is no spin dephasing; however,
there will always be some spin dephasing. Before
discussing spin dephasing, let us first consider the rate
γ of convergence, i.e., how rapidly the steady cat states
can be reached. To determine γ, we introduce the
Liouvillian spectral gap, λ = |Re [λ1]|, of the effective
master equation in Eq. (4) for κ1at = 0. Here, λ1 is
the Liouvillian eigenvalue with the smallest modulus of
the real part. Since the gap λ determines the slowest
relaxation of the Liouvillian [53], we thus conclude that
γ > λ. In the inset of Fig. 3(a), we numerically calculate

the gap λ, and find λ ≈ |α|2 κ2at for |α|2 ≥ 2.

Below we consider collective spin dephasing
γcolL(Sz)ρens, local spin dephasing γloc

∑N
j=1 L(σzj )ρens,
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and inhomogeneous broadening 1
2

∑N
j=1 δjσ

z
j . Here,

γcol and γloc are the collective and local dephasing
rates, respectively. Moreover, δj = ωj − ωq, where
ωj is the transition frequency of the jth atom and
ωq can be considered as the average of transition
frequencies of all the atoms [35]. We assume that the
distribution of δj has a linewidth ∆inh. The three
sources of dephasing noise conserve the excitation-
number parity of the superradiant subspace, where the
cat states are created and stabilized. Thus, all these
dephasing processes can be strongly suppressed by
the two-atom decay as long as γ � {γcol, γloc,∆inh}
(i.e., |α|2κ2at � {γcol, γloc,∆inh}) (see [35] for more
details). Figure 3(a) shows the dependence of such
a dissipative suppression on the ratio κ2at/γdeph,
assuming γcol = γloc = ∆inh ≡ γdeph. It is seen that for
κ2at = 10γdeph, corresponding to an ensemble coherence
time of γ−1deph ∼ 27 µs, a steady cat state is generated,
implying a significant suppression of spin dephasing. We
note that in Fig. 3(a) the error η is limited by a small
N , especially for κ2at = 10γdeph; and a larger N could
lead to a smaller η until the bosonic approximation is
well satisfied.

Cat-state lifetime.— Let us now consider the cat state
lifetime τat. According to the above discussions, the
effects of spin dephasing on τat can be excluded. This
lifetime is thus determined by the Purcell decay rate
Γ1at = 2 |α|2 κ1at, such that

τat = Γ−11at =

(
∆

gcol

)2
1

2 |α|2 κs
. (5)

Note that intracavity photonic cat states, i.e., equal
superpositions of two opposite-phase coherent states,
rapidly decohere into statistical mixtures due to single-
photon loss. The lifetime of such photonic cat states is
thus given by τph = 1/2 |α|2 κs [54]. Here, for a fair

comparison, we have assumed the same cat size |α|2
as our atomic cat states, and the same single-photon
loss rate κs as given for the signal cavity. It is seen
that τat is longer by a factor of (∆/gcol)

2
, compared to

τph. To make τat/τph larger, it is essential to increase
∆/gcol. However, the rate κ2at, which needs to be �
γdeph as mentioned already, decreases as ∆/gcol increases.
Thus, the ratio ∆/gcol has an upper bound for a given
γdeph. Experimentally, the coherence time, γ−1deph, of
NV-spin ensembles has reached ∼ 1 ms with spin-echo
pulse sequences [55, 56], and if dynamical-decoupling
techniques are employed, it can be even close to 1 sec [57].
In Fig. 3(b), the ratio κ2at/γdeph for different γdeph,
as well as the ratio τat/τph, is plotted versus ∆/gcol.
Assuming a realistic parameter of γ−1deph = 1 ms, we find
from Fig. 3(b) that in stark contrast to previous work on
intracavity photonic cat states (see Table I in [35]), our
approach can lead to an increase in the cat state lifetime
of up to four orders of magnitude for κ2at ≈ 15γdeph
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FIG. 3. (a) Effects of collective dephasing, local dephasing,
and inhomogeneous broadening on the preparation error η of
the state |C+〉 of size |α|2 = 2. We integrated the effective
master equation (4), with an additional spin dephasing

γcolL(Sz)ρens, local spin dephasing γloc
∑N

j=1 L(σz
j )ρens, and

inhomogeneous broadening 1
2

∑N
j=1 δjσ

z
j . The frequency

shifts δj are randomly given according to a Lorentzian
distribution of linewidth ∆inh. For simplicity, we here set
N = 10, γcol = γloc = ∆inh ≡ γdeph, and κ1at = 0, so that
only the effects of these dephasing processes are shown. Inset:
the Liouvillian spectral gap, λ, of the master equation (4)
versus the cat size |α|2 for κ1at = 0, under the bosonic
approximation. (b) Ratio κ2at/γdeph versus the parameter
∆/gcol for γ−1

deph = 10 µs, 100 µs, and 1 ms for κp = 5χ

and J/2π = 30 MHz. The yellow shaded area represents
the κ2at ≥ 10γdeph regime, where spin dephasing is strongly
suppressed by the two-atom decay. The solid green line shows
τat/τph versus ∆/gcol. Other parameters in (a) and (b) are
chosen as in Fig. 2.

and a very large cat size of |α|2 > 4. Correspondingly,
for a typical single-photon loss rate of κs/2π = 10 kHz
(i.e., a cavity decay time ∼ 16 µs) [30], the lifetime of

the |α|2 = 4 cat states resulting from our approach is
∼ 20 ms.

As the cavity loss rate κs decreases, the lifetime τat
further increases and ultimately reaches its maximum
value, limited by spin relaxation and thermal noise
(see [35] for more details). This maximum lifetime is
given by τmax

at = Γ−1relax. Here, Γrelax = [2|α|2(1 +
2nth) + 2nth]γrelax [58] is the cat state decay rate arising
from spin relaxation with a rate γrelax and thermal
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noise with a thermal average boson number nth. For
realistic parameters of γrelax = 2π × 4 mHz [37, 38] and
T = 100 mK, we can predict a maximum lifetime of
τmax
at ∼ 3 sec, which is more than two orders of magnitude
longer than the longest lifetime, 17 ms, of the intracavity
photonic cat states reported in Ref. [36].

Conclusions.—We have introduced a method to create
and stabilize large-size, long-lived Schrödinger cat states
in atomic ensembles. This method is based on the use
of fully quantized degenerate parametric amplification
to facilitate the simultaneous decay of two atoms, i.e.,
the two-atom decay. The resulting atomic cat states
can last an extremely long time, because of strongly
suppressed spin dephasing, and of extremely weak spin
relaxation and thermal noise. These long-lived cat
states are promising for both fundamental tests and
practical applications of quantum mechanics. Our work
can further stimulate more efforts to create and protect
macroscopic cat states or other fragile quantum states,
and also to utilize them to improve the performance of
various modern quantum technologies.
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