aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Discrete Time-Crystalline Order Enabled by Quantum Many-
Body Scars: Entanglement Steering via Periodic Driving
N. Maskara, A. A. Michailidis, W. W. Ho, D. Bluvstein, S. Choi, M. D. Lukin, and M. Serbyn
Phys. Rev. Lett. 127, 090602 — Published 27 August 2021
DOI: 10.1103/PhysRevlLett.127.090602


https://dx.doi.org/10.1103/PhysRevLett.127.090602

Discrete time-crystalline order enabled by quantum many-body scars: entanglement
steering via periodic driving

N. Maskara', A. A. Michailidis?, W. W. Ho'3, D. Bluvstein', S. Choi*®, M. D. Lukin', and M. Serbyn?
! Department of Physics, Harvard University, Cambridge, MA 02138, USA
2IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
3 Department of Physics, Stanford University, Stanford, CA 94305, USA
4 Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA and
5 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
(Dated: May 28, 2021)

The control of many-body quantum dynamics in complex systems is a key challenge in the quest

to reliably produce and manipulate large-scale quantum entangled states.

Recently, quench ex-

periments in Rydberg atom arrays (Bluvstein et al. Science 371, 1355 (2021)) demonstrated that
coherent revivals associated with quantum many-body scars can be stabilized by periodic driving,
generating stable subharmonic responses over a wide parameter regime. We analyze a simple, re-
lated model where these phenomena originate from spatiotemporal ordering in an effective Floquet
unitary, corresponding to discrete time-crystalline (DTC) behavior in a prethermal regime. Un-
like conventional DTC, the subharmonic response exists only for Néel-like initial states, associated
with quantum scars. We predict robustness to perturbations and identify emergent timescales that
could be observed in future experiments. Our results suggest a route to controlling entanglement in
interacting quantum systems by combining periodic driving with many-body scars.

Introduction.—Creating and manipulating entangle-
ment is a fundamental goal of quantum information sci-
ence, with broad implications in computation, metrol-
ogy, and beyond. At the same time, not all forms of
entanglement are useful. Strongly interacting quantum
many-body systems generate large amounts of entangle-
ment under their intrinsic dynamics, in a process known
as thermalization [1, 2]. However, such dynamics ir-
reversibly scramble quantum information. Controlling
entanglement while combating thermalization [3-5] in
isolated interacting many-body systems [6-8] is there-
fore essential for applications of large-scale entangled
states [9, 10].

Experimental studies involving programmable quan-
tum simulators based on Rydberg atom arrays [11] have
suggested that interacting quantum systems can exhibit
a weak breakdown of thermalization, where certain ini-
tial conditions exhibit surprising, persistent many-body
revivals. This phenomenon comes from quantum many
body scars (QMBS) [12, 13]- anomalous, non-thermal
eigenstates — named in analogy to non-ergodic states in
the spectrum of otherwise chaotic single particle Hamilto-
nians [14]. Intriguingly, in some models with QMBS the
system undergoes periodic entanglement and disentan-
glement cycles [13, 15-17], providing a potential route to
the controlled manipulation of entanglement dynamics.
In practice, however, QMBS are fragile [12, 15, 18, 19];
since they rely on a dynamically disconnected subspace
of non-thermalizing eigenstates [5, 15, 20-22], additional
interactions generically lead to thermalization [19].

Recent experiments [23] demonstrated that periodic
driving can dramatically increase the lifetime of scarred
oscillations. This observation is surprising, since the driv-
ing frequencies used were resonant with the local energy

scale, permitting easy energy absorption and rapid heat-
ing towards a featureless, infinite-temperature state. Ad-
ditionally, the experiment observed a robust subharmonic
response at half of the driving frequency, suggestive of
discrete time-crystalline (DTC) order [24, 25].

In this Letter, we propose a theoretical framework for
understanding these experimental observations by intro-
ducing a mechanism whereby driving stabilizes quantum
scarred oscillations, prolonging their lifetime and protect-
ing them against arbitrary perturbations. Specifically, we
focus on the PXP model [11, 26, 27] with kicked driving,
an idealized model for the Rydberg atom array experi-
ment [23]. This model exhibits robust subharmonic re-
sponses and many-body revivals coming from an effective
many-body spin echo. The deviation from a perfect echo
introduces a small parameter, allowing us to derive an
effective prethermal description of the Floquet dynamics
with is stable up until parametrically long times [28].

Namely, we construct an effective Hamiltonian in a ro-
tating frame, hosting an emergent Z, symmetry which is
spontaneously broken in its gapped ground state mani-
fold. In the laboratory frame, the system oscillates be-
tween the two spontaneously broken ground states, re-
sulting in a robust subharmonic response characteristic of
DTC [28-30]. However, this subharmonic response is re-
stricted only to Néel-like initial states which have a strong
overlap with the ground state of the effective Hamiltonian
— a property inherited from QMBS. Our model differs
crucially from earlier works on homogenous time crys-
tals in 1D [31-34] and mean-field constructions [35], in
that the trajectory being stabilized is generated by an in-
teracting Hamiltonian, which produces non-trivial entan-
glement. Therefore, our construction opens a prospective
route towards coherent control of entanglement dynam-
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ics.

Model and phenomenology—We study a periodically
kicked model H(t)= Hpxp +0N ), ., 6(t — kT), which
generates the following one-period Floquet unitary,
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describing evolution with the PXP Hamiltonian

Hpxp [11, 26, 27] for time 7, followed by the number
operator N applied through rotation angle 6. For
simplicity, the model is defined on a 1D chain of L sites
with periodic boundaries, although much of the analysis
carries over to higher dimensional bipartite lattices.
Each site is a two-level system spanned by a ground
(o) and an excited (e) state. Operators n; =|e) (e|, and
P;=|o) (o|, are projectors, while of =|o) (e|, + |e) (o],
generates Rabi oscillations. In the Hamiltonian, o7 is
dressed by projectors on neighboring sites, ensuring that
dynamics remain within the blockaded subspace where
adjacent sites are never simultaneously excited.

For =0 the Floquet dynamics (1) are equivalent to
undriven evolution under Hpxp. The PXP model is
non-integrable and features rapid growth of bipartite en-
tanglement entropy, Sens(t)=—trplnp where p is the
half-chain density matrix, from the majority of prod-
uct states. In contrast, quenching from the Néel state
|Z2) = |eceo...) leads to coherent oscillations between
|Z) and its inversion partner |Z5), as first seen in [11],
with oscillation period 7, ~1.517 that sets an intrin-
sic resonant timescale. These oscillations, supported on
quantum scars [12], are captured by the sublattice imbal-
ance in excitation number, Z = (2/L) Zf:/f(ngi,l —na;),
see Fig. 1(a), and also occur in higher dimensional bi-
partite lattices [23, 36]. However, dynamics under Hpxp
generate entanglement, and the coherent many-body os-
cillations eventually decay.

The addition of strong driving with a7 suppresses
thermalization at early times, most clearly seen in
the nominal growth of entanglement entropy over
multiple cycles, see Fig. 1(a). Concomitantly, oscil-
lations of Z synchronize to half the drive frequency,
a phenomenon known as subharmonic locking. The
origin of this response is related to the existence of
a special point at § = m, where driving implements
an effective many-body echo; because Hpxp anti-
commutes with the operator C = [[, 07 = eV, then
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implying perfect subharmonic revivals across the entire
Hilbert space. Furthermore, note that Hpxp anti-
commutes with C, irrespective of the lattice geometry.
However, upon deviating from # = =, these revivals
rapidly damp out for typical initial states, whose un-
driven dynamics do not exhbit many-body oscillations
in Z, see Fig. 1 and [37].

In contrast, long-lived oscillations from the Néel state
persist over a wide range of parameters centered at 6 =

(a) !
50
—1 =
_~
10 g 5.0
eyl on
= et S 5
%505 — T~ 25
(Z,) 6 =097
0.0 0.0
0 1 2 3 1 5 0.0 05 10
Evolution time ¢/7 Rotation angle 6/27
Figure 1. (a) The density imbalance Z and bipartite

entanglement entropy characterize oscillations between the
two Néel ordered states (]Z2)), for undriven (orange) and
driven (black) dynamics in an infinite size chain simulated via
iTEBD [37]. Adding driving with 7=0.9937./2 and 6 =0.97
to PXP model arrests the growth of entanglement entropy
Sent and prolongs the lifetime. In contrast, driven dynam-
ics from the |Z4) = |@oocecoo . . .) state, which do not support
scar oscillations, thermalize rapidly (blue). (b) Subharmonic
weight and average entanglement entropy, computed over 400
cycles (T'=4007), for an L = 28 chain, and 7 =0.9937,. /2. Dy-
namics from the |Z) state form a stable plateau around 6 = 7.
However from |Z4), the response disappears for 6 # .

and 7=7,./2. To quantify the response, we compute
the subharmonic weight fa(wa/2) x|S(wq/2)|?, defined
as the normalized spectral weight of (Z(t)) at half the
driving frequency wq = 27 /7, rescaled so fa(wq/2) =1 for
perfect subharmonic response at 0 =7 from the Néel
states, see [37]. The plateaus in the subharmonic weight
and time-averaged entanglement entropy in Fig. 1(b) sig-
nal a robust, persistent response at wq/2.

Many-body echo in su(2) subspace.—The robust sub-
harmonic response can be qualitatively understood using
mean-field-like trajectories on an effective Bloch sphere.
We invoke the forward-scattering approximation (FSA),
which constructs an L+ 1 dimensional subspace that cap-
tures dynamics under Hpxp from a Néel initial state, and
approximate su(2) algebraic structure [12] of a spin-L/2
collective degree of freedom. The S* operator is defined
by the density imbalance, S* = ZlL:/lQ(nm_l —ng;), so the
Néel state |Z2) (|Z4)) corresponds to the North (South)
pole. The S* operator is approximately proportional to
Hpxp, and generates a rotation that exchanges the two
Néel states (blue lines in Fig. 2). Finally, SY is calcu-
lated using su(2) commutation relations. In contrast,
the action of e =¥ pulses is more complex, since the op-
erator N does not have a closed form representation in
the su(2) subspace. However, it can be approximated as
N ~ (S7)? in the vicinity of the Néel states | Z5) and | Z}),
which accumulate identical phases under e~ see [37]
and Fig. 2(b). Note that we use the weakly deformed
PXP model [15] to generate spin operators, but consider
dynamics under Hpxp [37].

We visualize the many-body dynamics by computing
expectation values of the collective spin operators S*¥-%.
Figure 2(a) illustrates that at 6 =7 the second appli-
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Figure 2. Trajectories of driven PXP model for L =16, plot-
ted on the Bloch sphere of the collective spin-L/2. (a) The
dynamics generated by two periods of Ur (7, 7) exhibit a per-
fect return to the |Z5) initial state: e "THPXP with 1=0.45 7,
under-rotates the |Z2) state (blue line), then the application
of e "N (orange line) flips the z, y-projections of the spin so
that the second Floquet pulse completes the cycle. (b) The
same dynamics but for § =7 — 0.05 supports a periodic tra-
jectory near the Néel state. Dynamics initialized near the
periodic trajectory precess around it at stroboscopic times
forming cycles depicted for 100 driving periods for three ini-
tial states (green ring corresponds to |Z2) initialization).

cation of Hpxp returns the system to its initial state.
Away from 0=, trajectories from |Z3) are no longer
closed, but there exists a nearby closed orbit with pe-
riod 27, see Fig. 2(b). States near this periodic orbit,
including the Néel state, exhibit stroboscopic precession
around the fixed point, explaining subharmonic response.
In this picture, the existence of periodic trajectories is
qualitatively similar to mean-field descriptions of time
crystals [35, 38, 39]. However, a key difference is that the
emergent spin-L/2 degree of freedom is not composed of
independent spins, evinced by non-trivial entanglement
oscillations. Furthermore, dynamics outside of collective
spin-L/2 subspace are ergodic, leading to rapid thermal-
ization from other initial states. As such, this picture
does not explain why the spin-L/2 subspace is a good
approximation, and how driving reduces thermalization,
for which we must consider the many-body Floquet uni-
tary.

Prethermal analysis and effective Hamiltonian.—We
analyze the many-body dynamics by expanding around
the perfect echo point # = 7 where the Floquet unitary is
denoted X =Up(w, 7). This allows us to write

Up(0,7) =e“NX., e=n—0, (3)

where € is a small parameter quantifying the deviation
from the perfect point. Since X2=1, the dynamics
are equivalent to a generalized spin flip, followed by
short evolution under N for time ¢ [37]. As such, the
unitary Ug(6,7) is written in the canonical time crys-
tal form [25, 29]; here, we apply the techniques from
Ref. [28, 40] to show the Floquet unitary can be approx-
imated by Up ~ Ve <Hr XV, where Hp is an effective
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Figure 3. (a) Eigenspectrum of U f,” plotted for various rota-
tion angles 7, L =16, and e = 1, with color intensity reflecting
overlap with Néel state. Near 7/7,.21/2, the states with
largest overlap exhibit 7-pairing, indicating subharmonic re-
sponse. However, near 7/7, =0, 1, they exhibit 0-pairing. (b)
Low-energy spectrum of H l(wl) reveals two-fold degeneracy be-
tween ground states from k=0 and 7 momentum sectors (de-
noted as ko ) with X; eigenvalues +1(X+) in the region that
corresponds to m-pairing in (a). The splitting of the ground
state manifold vanishes exponentially with system size within
the paired regions, with the inset showing finite size scaling
at /7. =1/2.

Hamiltonian constructed perturbatively in ¢, and V is a
perturbative frame transformation [37].

As the DTC phenomenology depends on spectral prop-
erties of the effective Floquet unitary, we base our anal-
ysis on the leading order effective Hamiltonian and Flo-
quet unitary,

1 e
Hy) = =5 (N +X,NX;), Ug)(0,7) = e x
(4)

The effective Hamiltonian Hl(vl) corresponds to the av-
erage Hamiltonian in a frame co-rotating with X, and
so to leading order e sets the timescale of dynamics in
the rotating frame. Crucially, the expansion of Hp has
an emergent Zs symmetry [Hp, X;] =0 at higher orders
as well, which ultimately comes from time-periodicity of
the drive [28, 37]; nevertheless, formally the expansion is
an asymptotic series, and hence should be truncated at
some optimal order to accurately capture dynamics of lo-
cal observables. The effect of residual terms is rigorously
bounded [28, 41], guaranteeing accuracy of Hg up to the
prethermal timescale T}, > (7/€)e?/€ for some ¢, > 0.
The origin of the subharmonic response can be under-
stood by analyzing eigenstates of the transformed Flo-
quet unitary in Eq. (4) and their dimensionless quasi-
energies ¢, defined by U}l) |u) = e |u). For T near an
integer multiple of 7,./2, the Floquet operator has a



pair of eigenstates characterized by strong overlap with
|Z2) ,|Z4), and featuring nearly degenerate quasi-energies
(0-pairing) or quasi-energies separated by 7 (7-pairing),
see Fig. 3(a). These observations also imply the eigen-
states can be well approximated by the long-range corre-
lated “cat” states |+) = (|Z2) & |Z3))/v/2 as these states
carry definite momentum ko (|+)) and k- (]—)), and un-
derlie spontaneous symmetry breaking (SSB) of the sys-
tem’s translation symmetry. However, the emergent sym-
metries X, also play a crucial role, as the 7 and 0 quasi-
energy gaps occur when X, either exchanges the two Néel
states (7 =7,/2) or leaves them invariant (7=0,7,). A
7 quasi-energy gap between the “cat” states |+) leads
to subharmonic response in dynamics from the |Zs) or
|Z%) state, and is characteristic of time-crystalline or-
der [25, 29, 42-44]. At the level of the effective Hamil-

tonian Hg), these 7(0)-paired eigenstates correspond to
degenerate ground states in Fig. 3(b), separated by a fi-
nite gap A to excited states, and belonging to different
(same) symmetry sectors of X.. Hence X, symmetry
breaking in the ground state is linked to DTC order and
the subharmonic oscillations of spatial order [25, 29, 37].

We argue the observed region with DTC order de-
scends from a model with conjectured perfect scars [15,
37]. Specifically, if we deform the PXP model as de-
scribed in  [15], X, at 7=7,./2 exactly exchanges the
Néel states, and |£) become true ground states of H}l)
with a constant gap A > 1. The PXP model, as well as
driving for 7 away from 7,./2, are weak deformations of
this drive. However, these deformations do not preserve
the emergent symmetry X, at the level of H g), and could
destroy the ground state degeneracy. In Ref. [37], we ar-
gue that since the emergent symmetry changes slowly as
we deform the drive, the ground states throughout the
m-paired region in Fig. 3 may be adiabatically connected
to |£). Indeed, we confirm the energy splitting in the

ground state of Hg) decreases exponentially with sys-
tem size, see Fig. 3(b) inset, as expected for SSB.
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Figure 4.  Dynamics of revival fidelity under the periodi-
cally kicked Rydberg Hamiltonian, and emergent prethermal
timescales. Stroboscopic dynamics of fidelity for § =1.17, and
7=0.9937,/2 reveal the subharmonic timescale T, the beat-
ing timescale T3, and Rabi oscillations in the groundspace,
with characteristic timescale T,. Even (odd) multiples of 74
are colored blue (red). Data is for the L =14 chain.

The above analysis reveals four distinct timescales
emergent in the prethermal regime of Eq. (4). The short-
est timescale Ts = 27 is the subharmonic response. The
second timescale, determined by the gap A in the spec-

trum of Hg), is Ty, o< 7(eA)~! and comes from over-
lap between the Néel initial state and the lowest lying
excited states. Semiclassically, T} is the precession pe-
riod from Fig. 2(b). Finally, the longest timescale is
set by the inverse energy splitting in the ground state

manifold of H}l), T, o< (1/€)eel, characteristic of SSB.
All phenomenology is ultimately contingent upon the
validity of the prethermal analysis, which holds until
T, 2 (1/e)ecr/<.

Connections to experiments.— Going beyond the ide-
alized model (1), we replace Hpxp in Eq. (2) by the
Rydberg Hamiltonian Hgry = (2/2)) .07 — 0) ,n; +
> (Vingnip1 4+ Vangngy o), which includes imperfect Ry-
dberg blockade and next-nearest-neighbor interactions.
The PXP Hamiltonian is recovered from Hgy in the
limit Vi — oo, Vo =0, and the resonant time 7, <1/ is
rescaled. Here, we consider a 1D chain with Vo =V} /26,
V1 =109, and choose d =V5 to cancel the static back-
ground from the next-nearest-neighbor interactions [23].

Figure 4 illustrates the timescales Ts, Tp, and
T, from stroboscopic dynamics of the revival fidelity
F, =|{Z3|Ur(0,7)"|Z2)|? generated by the kicked Hamil-
tonian H(t) = Hry +0N ), 6(t — k). Over tens of driv-
ing cycles, we observe a robust subharmonic response,
and an emergent beating timescale T,. Over hundreds
of driving cycles, we observe slow oscillations between
even periods Fy,, and odd periods Fy, 11, with timescale
T,. Specifically, in the rotating frame, the two ground
states of Hp, ~ |+), form an effective two-level sys-
tem with energy splitting AE=FE, — E_. The initial
state can be expanded as |Zy)=(|+) + |-))/V?2, and
after a time T, =m/(2AF), it evolves into a superpo-
sition (|+) +4|—))/v/2 equivalent to (|Z2) —i|Z5))/v/2
modulo global phase, which is a macroscopic superposi-
tion corresponding to the so-called Greenberger-Horne-
Zeilinger (GHZ) state. Dynamics in the lab frame are re-
lated by & kicks, which exchange the Néel states every
period. Finally, the prethermal time, when all fidelities
may become exponentially small in L, is not visible for
the system sizes or times simulated.

Discussion.—These considerations demonstrate that
entanglement dynamics associated with quantum many-
body scars can be stabilized and steered in the peri-
odically kicked PXP model, resulting in an evolution
strongly reminiscent of prethermal DTC order. Our con-
struction relies on the effective many-body m-pulse real-
ized through quantum scars, which connect the two Néel
states via an entangled trajectory, and a driving pulse
that reverses the direction of time. Similar to prether-
mal time crystals, the emergent order features a robust,
long-lived subharmonic response and spatiotemporal or-
der for a range of parameters. However, in our model
these signatures are present only for eigenstates which
are perturbatively close to the Néel initial state, and re-



quire sufficiently high fidelity state preparation to be ob-
served [32]. Nevertheless, we demonstrate that the sig-
natures of DTC physics survive in an experimentally rel-
evant model, thus providing a possible explanation for
recent experimental observations in [23]. Moreover, we
theoretically predict new emergent timescales that could
be observed in future experiments and the possibility of
preparing GHZ states [45] in driven quench dynamics.
The phenomenon described here drastically enhances
the stability of non-ergodic dynamics thus opening a
large number of exciting directions. Specifically, by ex-
tending this construction to the more complicated tra-
jectories in the PXP model [16] or to quantum scars
in other models [5, 17, 22, 46, 47], control over more
complex entanglement dynamics could be implemented.
From a practical perspective, there remains a number of
questions related to experiments in Rydberg arrays [23].
In particular, it is desirable to understand the dynamics
in two-dimensional lattices [36], including the situations
where two sublattices have different numbers of nearest
neighbours. In higher dimensions, there exists an intrigu-
ing possibility of realizing a true prethermal time crystal,
with a finite temperature phase transition in Hp. It is
also desirable to build a theory for higher order subhar-
monic responses observed in experiments [23], and obtain
analytical understanding for continuously driven models.
Finally, it is important to understand if one can imple-
ment full control over the many-body dynamics within
the effective spin-L/2 subspace [48], which could be uti-

lized for applications such as robust quantum information
storage and quantum metrology.
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