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We introduce Dynamic Speckle Holography (DSH), a new technique that combines imaging and
scattering to measure three dimensional maps of displacements as small as ten nanometers over
several centimeters, greatly extending the capabilities of traditional imaging systems. We attain this
sensitivity by imaging speckle patterns of light collected at three scattering angles and measuring
the decay in the temporal correlation due to local motion. We use DSH to measure the strain field
of a colloidal gel undergoing fracture and establish the surprising role of internal tension in driving
the fracture.

Measuring the dynamics of a system through the dis-
placement of its constitutive elements is critical in many
fields of research, from fluid dynamics to condensed mat-
ter physics. Such displacements are often measured by
tracking features in images taken at different times: ex-
perimental methods such as particle tracking [1–9] or par-
ticle image velocimetry [10–13] are powerful and widely-
used implementations of this method. However, these
techniques all suffer from one key limitation: because
they rely on tracking features in the image, their sensi-
tivity, which is the smallest displacement they can probe,
is intrinsically coupled to their resolution, which is the
smallest size they can image. This precludes their use
in applications involving small scale motion spread over
large fields of view, such as occurs, for example, in fluid-
flow and mechanical instabilities [1, 14–18]. For instance,
the propagation of a fracture entails fast, sub-micron mo-
tion extended over large distances [16, 19]. This motion is
extremely difficult to measure with real-time optical ex-
periments, yet its detection is crucial to understand crack
propagation in complex environments [20–25]. Similar
limitations apply to many other phenomena, from turbu-
lence, where flow is structured over many length scales
from the system size to molecular scale [14], to plasticity
and yielding, where mechanical energy is often dissipated
by avalanche-like processes that are microscopic in na-
ture but correlated over macroscopic distances [5, 18, 26–
30]. Measurement of motion at these microscopic length
scales and over very large fields of view, using optical
methods with the combination of spatial and temporal
resolution, would enable investigation of many phenom-
ena, for which our understanding has, so far, been hin-
dered by the lack of experimental data.

In this paper we introduce Dynamic Speckle Hologra-
phy (DSH), a novel imaging technique that detects dis-
placements below the resolution limit set by diffraction,

with a sensitivity completely independent of the resolu-
tion and the field of view. This is achieved by exploiting
optical interference: DSH illuminates the sample using a
coherent source, records the speckle pattern formed by
the scattered light and analyzes the time evolution of
each speckle to achieve sensitivity to displacements as
small as ∼ 10 nm. Using two lasers and two imaging
detectors, DSH provides a full three-dimensional recon-
struction of the displacement field with a spatial reso-
lution of ∼ 100 µm over a field of view spanning sev-
eral centimeters. We validate DSH by investigating the
flow of a Brownian suspension in a channel, showing that
both Poiseuille flow and Brownian motion can be inde-
pendently and simultaneously measured without resolv-
ing individual particles. In addition, we exploit DSH to
reconstruct the complex deformation pattern surround-
ing the tip of a fracture propagating through a colloidal
gel, and show that, unexpectedly, the gel pulls itself apart
due to internal tension. Our results demonstrate the flex-
ibility of DSH and illustrate its potential to investigate
new phenomena.

We illustrate DSH by using it to study Poiseuille flow
of a Brownian suspension in a channel. The sample is a
0.5wt% suspension of 500-nm-diameter polystyrene par-
ticles in a 1:10 water-glycerol mixture, flowing in a chan-
nel with rectangular cross-section ofA = 12.5×0.12 mm2.
The channel is illuminated by a laser beam, and a cam-
era records images of the scattered light collected using
a diaphragm and a lens, as shown in Fig. 1a. This ge-
ometry is similar to that used for Photon Correlation
Imaging [31]: the sample is in the strictly single scat-
tering limit and the camera collects only light scattered
at an angle θ ≈ 26◦, corresponding to a scattering vec-
tor ~q, with magnitude q ≈ 4.25 µm−1, and oriented very
close to the flow direction along the channel, as indi-
cated in Fig. 1a. The optical setup has a large field of
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view, about 3 × 2.4 cm2, but a low resolution, making
it impossible to image individual particles. Instead, be-
cause of the laser coherence, images have a speckled ap-
pearance shown in Fig. 1b. Each speckle is the coherent
superposition of light scattered by ∼ 105 particles in a
small volume of thickness h= 0.12 mm and lateral size
σ ≈ 50 µm. By comparing images taken at two different
times t1 and t2, we observe that the intensity of speckles
generated by the flowing suspension fluctuates, whereas
those generated by the channel walls remain constant,
as shown in the insets of Fig. 1b. To quantify this tem-
poral fluctuation, we compute the degree of correlation,
cI ∝ 〈I(t1)I(t2)〉 − 〈I(t1)〉〈I(t2)〉 , across the whole im-
age, where I is the intensity and the average is computed
over groups of nearby pixels to retain the spatial resolu-
tion of the image while still providing a good measure
of the temporal variation [32]. As the two speckle pat-
terns become increasingly different, cI decays from 1 to
0. For any pair of images, cI is homogeneous within the
channel and depends only on time delay τ = t2 − t1. We
average cI(τ) from the fluid over space and time and find
that, as the flow rate Q is varied, the curves all have
a similar shape, shown in Fig. 1c; each data set can be
collapsed onto a single master curve when τ is rescaled
by v0, the flow speed in the middle of the channel, as
shown in Fig. 1e. This provides a means of determining
v0 using DSH. Interestingly, each data set also exhibits
clearly-defined damped oscillations, which remain clearly
visible even upon scaling the data.

The dependence of cI(τ) on v0 stems from the depen-
dence of the speckle intensity I(t) on the phase of the
light scattered by all particles, and therefore on their po-
sitions projected along the scattering vector ~q [33]. Thus,
relative motion of a fraction of wavelength in the direc-
tion of ~q results in fluctuation of I(t), as captured by the
decay of cI(τ). Here, relative motion occurs because of
the flow gradient imposed by the channel walls: particles
in the middle of the channel flow at v0, whereas parti-
cles close to the walls are almost immobile. Over a time
delay τ , they accumulate relative displacements as much
as v0τ , which determines the decay of cI in Fig. 1e. The
damped oscillations result from the alternating construc-
tive and destructive interference between light scattered
by the slowest and fastest particles contributing to each
speckle [34]. We develop an analytical model to account
for the parabolic velocity profile of Poiseuille flow and
predict the correlation function (see Supplemental Mate-
rial at [URL will be inserted by publisher] for the deriva-
tion, which includes Refs. [35–38]). The model fits the
data very well, including the oscillations, as shown by
the solid line in Fig. 1e. From the fit, we obtain a pre-
cise measure of v0, in good agreement with the expected
value ve = 1.5Q/A, as shown in Fig. 1f. However, the
model underestimates the damping of the oscillations for
the slowest flow rates; this is because DSH is sensitive
to all forms of motion, including the Brownian motion

of the tracer particles, which becomes increasingly im-
portant as Q decreases. We can generalize the model to
include diffusive motion superposed to laminar flow: we
use the diffusion coefficient D = 2.5 · 10−3 µm2/s com-
puted using the Stokes-Einstein relation; the combined
model captures the shape of the oscillations very well at
all flow rates, as shown by the lines in Fig. 1c.
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FIG. 1. (a) DSH geometry (not to scale): scattered light is
collected by a camera (C) through lens (L) and diaphragm
(D), to image the speckles (P ′, Q′). (b) Speckle image of
flow channel. Channel edges are highlighted by dashed lines.
Insets: expanded region of 200x200 µm2, recorded at times t1
and t2. (c) Correlation functions measured with ~q ‖ ~v for flow
rateQ = 5, 10, 20, 50, 100, 200, 500, 1000 mm3/h (full symbols,
blue to red), all in the laminar flow regime. Lines: analytical
model combining Poiseuille flow and Brownian motion. (d)
Correlation functions measured with ~q ⊥ ~v, for same Q (open
symbols). Line: correlation decay due to Brownian motion.
(e) Symbols: data from panels (c, d) plotted against v0τ .
Solid line: correlation function for Poiseuille flow. Dashed
line: correlation function for rigid speckle drift. (f) Poiseuille
flow velocity v0 as a function of expected value ve. Line:
v0 = ve.

For the largest flow rates, the correlation functions de-
cay faster than the acquisition rate of the camera. In
this case, we can decrease the sensitivity of DSH to the
flow by changing the orientation of the scattering vector
relative to the flow direction: when ~q is perpendicular
to the channel, the effect of flow on speckle fluctuation
is reduced, and cI(τ) exhibits a slower and qualitatively
different decay, as shown in Fig. 1d. For the largest flow
rates, the correlation functions again scale with v0, col-
lapsing onto a master curve when plotted as a function of
v0τ , as shown in Fig. 1e. This decay is a result of speck-
les drifting rigidly in the flow direction at the average
particle speed vd = 2v0/3: the correlation decays when
the drift, vdτ , exceeds σ. Thus, cI can again be used
to measure v0, but here with a lower sensitivity, set by
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σ. In turn, σ can be varied by changing the aperture of
the diaphragm to investigate faster flow without increas-
ing the data acquisition rate. This use of DSH is similar
to laser speckle velocimetry (LSV) [11, 39]. In contrast
with LSV, however, DSH remains sensitive to both the
motion of the speckles and to their fluctuation; this pro-
vides additional information about the microscopic dy-
namics. For the very smallest flow rates, speckle drift
becomes negligible, and instead cI(τ) exhibits an expo-
nential decay, independent of v0: this is due to Brownian
motion of the particles, as probed by traditional dynamic
light scattering [33], and is represented by the solid line
in Fig. 1d. These results illustrate the power of DSH to
very sensitively probe different types of microscopic mo-
tion in three dimensions over a wide range of decay times
and a large field of view.
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FIG. 2. (a) Optical configuration for three dimensional DSH.
Two laser beams illuminate the sample, forming perpendicu-
lar scattering planes. Light scattered along the ẑ axis is col-
lected from both sides by mirrored optical setups composed
of a diaphragm, a lens and a camera. (b) Orientation of the
4 scattering vectors formed by 2 incident wavevectors and 2
scattered wavevectors.

The real power of DSH is its ability to resolve complex,
tiny motions in space and time over large areas. A good
example of this type of motion is the elastic deformation
field of a solid; this is intrinsically very small, yet cor-
related over a long range. We focus on the strain field
around a propagating crack: this is particularly challeng-
ing because not only is the motion very small and over
an extended range, but it is also non-stationary, evolv-
ing rapidly in time as the crack propagates. The sample
is a colloidal gel formed by aggregating colloidal silica
at a volume fraction of 2% by using urease to dissociate
urea and increase the salt concentration to screen the sta-
bilizing repulsive interaction between particles [40, 41].
The resultant gel has an elastic modulus of ∼ 1 kPa.
To finely control the fracture propagation, we confine
the gel between two transparent windows with a gap of
1 mm, and inject mineral oil through a tube, as shown in
Fig. 2a. As the fracture propagates, the speckle pat-
tern fluctuates, indicating the gel is deforming. This

is transient elastic deformation, in contrast to the sta-
tionary behavior of fluid flow. We therefore introduce
a new way to analyze speckle dynamics that captures
transient deterministic displacements of materials: we
compute a correlation map cI(~x; t1, t2) for every pair of
frames, acquired at times t1 and t2, and use a grayscale,
with darker shades corresponding to lower correlation,
to show the spatial pattern of the motion. A typical
correlation map exhibits darker regions around the inlet
and the crack tip, as shown in Fig. 3a. The amount of
decorrelation can be directly converted into the partial
displacement ∆r(~x; t1, t2) between t1 and t2, projected
along the scattering vector ~q. However, this conversion
fails for ∆r >∼ 1 µm, as it results in complete loss of
correlation. Similarly, ∆r <∼ 100 nm have a large uncer-
tainty because the loss of correlation is so small. Thus,
to improve the measurement of both larger and smaller
displacements, we compute cI for a given initial time t1
and different final times t2, and verify that the measured
motion is additive: ∆r(t1, t2) + ∆r(t2, t3) = ∆r(t1, t3).
We then integrate ∆r in time to resolve larger displace-
ments and we differentiate it to improve the sensitivity
to small motion. This enables reconstruction of displace-
ments spanning nearly three orders of magnitude, be-
tween about 10 nm and several microns, as illustrated in
the displacement map shown in Fig. 3b.

The displacement map ∆r(t1, t2) exhibits two lobes ar-
ranged horizontally in the x-direction, and a third one
directly below them in the y-direction. While these are
centered at the crack tip, they are not symmetric with
the direction of crack propagation; they are instead sym-
metric with the scattering vector. This suggests that
there may be a directional motion perpendicular to ~q
that cannot be detected. To investigate this, we intro-
duce a second laser beam such that the scattering vector
points in the y direction, as shown in Fig. 2. We al-
ternate the illumination from the two laser beams, and
collect images from the same propagating crack at the
two perpendicular scattering vectors, ~qx and ~qy. The
displacement map along ŷ exhibits a similar pattern as
that along x̂, but with ŷ symmetry about the crack tip, as
shown in Fig. 3c. In both cases, the measurement is sen-
sitive only to the magnitude of the displacement, and not
its direction. However, combining the two maps we ob-
tain a two-dimensional displacement ∆~r that is symmet-
ric about the crack and centered about the tip suggesting
that motion is away from the crack. By integrating ∆~r
from the beginning of the experiment to a given time t
we obtain the total displacements ~R(~x, t) accumulated
since the fracture nucleation, which is directly related to
the strain field, and can be used to gain insight into the
behavior of the moving crack.

We find that ~R(~x, t) is largest close to the crack, and
decays rapidly away from it, as shown by the arrows in
Fig. 3e. Thus, we measure its magnitude R as a function
of the distance, d, from the crack, along the dashed line
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shown in Fig. 3e. For larger d, R decays exponentially, as
shown in Fig. 3f. This long range strain field corresponds
to the elastic deformation induced by the pressure of the
fluid driving crack propagation, assuming no-slip bound-
ary conditions at the confining plates [42]. Under these
conditions, the deformation of an ideal, incompressible
material is similar to Poiseuille flow, with the maximum
displacement halfway between the two confining plates,
independent of d. By contrast, in a compressible mate-
rial, R decays exponentially with d, with a decay length
determined by Poisson’s ratio, ν [42]. A fit to the expo-
nential tail of R(d) yields ν = 0.4996±10−4, indicating
that the gel is nearly incompressible. Closer to the crack,
R deviates upwards: by subtracting the long range expo-
nential contribution, we show that the excess in R is well
described by a second exponential decay, with a larger
prefactor and a shorter decay length, as shown by the
open symbols in Fig. 3f. This indicates that close to the
crack the gel deforms more and can be more easily com-
pressed.

To account for this excess deformation, we consider
the consequences of the internal tension of the gel, which
arises from the kinetics of its formation; since the gel is
formed by cluster-cluster aggregation [43], two clusters
will most likely stick to one another in a configuration
that is not their equilibrated state, leading to an internal
tension within the gel [44]. To validate the presence of
internal tension we form the gel in a rheometer using par-
allel plate geometry and measure a negative normal force,
pulling the plates towards each other during gelation, in-
dicating an internal tension σzz = −120 Pa. Upon frac-
ture, σzz will pull the gel in all directions away from the
fracture, both towards the intact gel and towards the con-
fining windows; this results in a more complex deforma-
tion with motion in all three dimensions. We can use the
power of DSH to directly measure this by also detecting
motion perpendicular to the windows. We add a second
optical setup, identical to the first, to collect backscat-
tered light, as shown in Fig. 2a. This measures motion
along two additional scattering vectors ~qxz and ~qyz, with
predominant components along the optical axis ûz and
therefore sensitive to out-of-plane motion. Both ~qxz and
~qyz share the same in-plane components as their small-
angle counterparts ~qx and ~qy, as shown in Fig. 2b. Thus
the speckle fields detected by both cameras are equally
sensitive to in-plane motion, enabling us to isolate the
contribution of out-of-plane motion. Relative out-of-
plane displacements are qualitatively different from those
in-plane: cI(τ) decays exponentially, suggesting that part
of the gel deforms in one direction while the other part
deforms in the opposite direction. In this case, the corre-
lation function depends on the mean square out-of-plane
displacement ∆r2z . This motion is enhanced close to the
crack tip, and decays roughly isotropically away from it,
as shown by the colormap in Fig. 3d. Again, ∆r2z is
additive, so that ∆r2z(t1, t2) + ∆r2z(t2, t3) = ∆r2z(t1, t3):
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FIG. 3. (a) Correlation map from a propagating crack, indi-
cated by the dashed blue line, measured with ~q ‖ x̂ for τ = 1 s.
The scale bar corresponds to 1 mm. (b-d) Maps of the partial
displacements ∆~r, accumulated over τ = 1 s. (b) Displace-
ments along x̂, represented with a logarithmic colormap; (c)
Displacements along ŷ; (d) Combined map of displacements
in the xy plane (arrows) and along ẑ (colormap). (e) Map of

total displacements ~R relative to the sample at rest. (f) De-
formation profile as a function of distance, d, from the crack.
Full black symbols: in-plane displacements; red line: fit to
the exponential tail; open black symbols: residuals of the ex-
ponential fit; blue symbols: out-of-plane displacements.

by integrating over time we obtain the total out-of-plane
mean square displacement R2

z(~x; t) accumulated through
time t, which we show as a colormap in Fig. 3e. We find
that R2

z is enhanced close to the fracture, and relaxes to a
small plateau value with a characteristic length of 4 mm.
These results provide important insight about the nature
of a crack propagating in a colloidal gel: surprisingly the
internal tension pulls the gel apart as the crack propa-
gates; this tension also pulls the gel towards the walls, re-
sulting in motion in 3D. Further away from the fracture,
the pressure of the driving fluid pushes the gel away from
the crack. Here, the gel structure remains intact, and the
motion is essentially planar and follows the exponential
decay predicted by linear elasticity. These results high-
light the power of DSH to reconstruct a rapidly evolving
strain field surrounding the tip of the propagating crack,
thus measuring very small motion over a large area.
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Dynamic speckle holography is a powerful imaging
technique that relies on interference of scattered light
rather than the resolution of imaged light, enabling very
small three-dimensional motions to be measured over
large fields of view. Moreover, DSH can be applied to
non-stationary motion such as the strain field induced
by fracture or other stochastic displacements such as
those involved in plasticity. Its sensitivity makes DSH
an ideal technique to probe motion that is microscopic
yet structured over large length scales, such as turbulent
flow or collective dynamics in active or externally driven
systems.
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