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At strong repulsion, the triangular-lattice Hubbard model is described by s = 1/2 spins with
nearest-neighbor antiferromagnetic Heisenberg interactions and exhibits conventional 120◦ order.
Using the infinite density matrix renormalization group and exact diagonalization, we study the
effect of the additional four-spin interactions naturally generated from the underlying Mott-insulator
physics of electrons as the repulsion decreases. Although these interactions have historically been
connected with a gapless ground state with emergent spinon Fermi surface, we find that at physically
relevant parameters, they stabilize a chiral spin-liquid (CSL) of Kalmeyer-Laughlin (KL) type,
clarifying observations in recent studies of the Hubbard model. We then present a self-consistent
solution based on a mean-field rewriting of the interaction to obtain a Hamiltonian with similarities
to the parent Hamiltonian of the KL state, providing a physical understanding for the origin of the
CSL.

Introduction– The triangular lattice has played a
prominent role in the physics of spin liquids ever since
they were first proposed by Anderson [1], and many of
the candidate materials exhibit this lattice geometry [2–
11]. In particular, some organic charge transfer salts [2, 3]
and 1T -TaS2 [6, 12] are believed to be described by the
Hubbard model on the triangular lattice in the vicinity
of the Mott transition. While the existence of a non-
magnetic insulating (NMI) phase in the Hubbard model
has been observed in numerous studies [13–23], the deter-
mination of the type of spin liquid phase in direct studies
of the Hubbard model has long been elusive.

The problem has instead often been investigated via an
effective spin model. Deep in the insulating phase of the
Hubbard model, a nearest-neighbor Heisenberg model is
sufficient and contains long-ranged three-sublattice or-
der [24–26]. To describe physics closer to the Mott tran-
sition, one includes a four-spin ring exchange part in
addition to the Heisenberg term, a description coming
from the lowest order t/U expansion of the Hubbard
model [27]. In a seminal paper, Motrunich showed us-
ing variational Monte Carlo simulations that a spin liq-
uid with spinon Fermi surface (SFS) is a strong com-
petitor for the ground state if the ring exchange term
is large enough [28]. Indications for this state, in sub-
sequent works also referred to as spin-Bose metal, have
been seen in other studies including some with comple-
mentary methods [12, 17, 29–32], but remain under de-
bate [33]. However, recent work on the Hubbard model
suggested that the NMI is instead a chiral spin liquid
(CSL) of Kalmeyer-Laughlin (KL) type [34–38], seem-
ingly at odds with the results for the effective spin model.

In this Letter, using a combination of exact diagonal-
ization (ED) and infinite density matrix renormalization
group (iDRMG) [39] simulations, we first show that the
KL spin liquid is indeed the ground state of the effective
spin model around the parameter regime relevant for the
Hubbard model. We demonstrate that this CSL does

not emerge as a competing state to the SFS, but rather
appears at a different value of the four-spin interaction;
this is to our knowledge the first demonstration of a KL
ground state in a time-reversal invariant spin model on
the triangular lattice. However, we also find that much of
the region which had been attributed to the SFS in pre-
vious works is occupied by a magnetically ordered zigzag
state. The second main result is to connect analytically
the four-spin term, which preserves time-reversal sym-
metry (TRS), back to the TRS-breaking parent Hamil-
tonians of the KL state [40, 41] by mean-field arguments.
Hence one aspect of our work clarifies the relation be-
tween the appearance of the CSL in the triangular lat-
tice Hubbard model and the corresponding spin model,
while the second clarifies why the CSL appears in the spin
model via a connection to known TRS-breaking parent
Hamiltonians for the CSL.

Finding a parent spin Hamiltonian of the KL state
[40, 41] and its generalizations, the Read-Rezayi states
[42, 43], has been of considerable interest. Generally, the
parent Hamiltonians derived from conformal-field theo-
retic arguments have long-ranged interactions, but a lo-
cal Hamiltonian can be found if only short-ranged coef-
ficients are kept, made uniform, and tuned [41, 43–47].
While the underlying Hamiltonian for a material in zero
applied field should respect TRS, these parent Hamilto-
nians explicitly break TRS. A notable exception is on
the Kagome lattice near a classical chiral phase transi-
tion [48–53], but no TRS-preserving spin Hamiltonian
with KL ground state on the triangular lattice is known
analytically.

Model– Motivated by the t/U expansion of the Hub-
bard model, we consider the following Hamiltonian

H = J1
∑
〈ij〉

SSSi ·SSSj + J2
∑
〈〈ij〉〉

SSSi ·SSSj +H4, (1)

where 〈ij〉 (〈〈ij〉〉) denotes (next-)nearest neighbor pairs.
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Figure 1. (a) The different colored lines connect the spins
involved in the different terms of Eq. (1) (b) The first Bril-
louin zone of the lattice showing several named points. (c)
The proposed phase diagram from our ED results using the
various orders in Fig. 2. For phase descriptions, see [73]. The
phase boundaries were determined via the symmetry sector of
the ground state and first excited state [46, 73]. The greyed
out region is within the SFS parameter space found in [28],
but also might have some dimer or plaquette ordering. (d)
The phase diagram from the iDMRG results on the Ly = 6
cylinder on the J2 = 0.00, 0.05 slices, which includes the CSL
perhaps suggested by ED. (e) From left to right, the 120◦,
collinear, zigzag, and tetrahedral (whose spins, connected tail-
to-tail, form a tetrahedron) classical spin orders are shown
[73].

The four-spin interaction H4 is given by

H4 = J4
∑
〈i,j,k,l〉

[
(SSSi ·SSSj)(SSSk ·SSSl)

+ (SSSi ·SSSl)(SSSj ·SSSk)− (SSSi ·SSSk)(SSSj ·SSSl)
]
.

(2)

where 〈i, j, k, l〉 denotes a sum over unique rhombuses as
defined by unique next-nearest neighbor pairs 〈〈ik〉〉 (see
Fig. 1). This four-spin term is related to the extensively
studied ring-exchange operator [12, 28–31, 33, 54–62] via
the 4J2 = J4 line. Furthermore, studies on the J4 = 0
line have focused on the emergence of a “J1-J2 spin liq-
uid” [45, 46, 63–68]. Treated classically, the Hamiltonian
exhibits spontaneous TRS breaking into a tetrahedrally
ordered phase [69–73] further motivating this particular
model. From here on in, we take J1 = 1 and

∑
i S

z
i = 0.

Exact diagonalization– We perform ED on 6 × 4
spins with periodic boundary conditions (PBC). The
PBC are chosen such that the unit cell is translated in
the ŷ direction and in the 2x̂ − ŷ direction. We com-
pute the structure factor for the spin, SSSi, and dimer,

Figure 2. (a)-(f) Various orders are shown in color vs. J2
and J4. The table in the upper right indicates the phase that
each order corresponds to. (g) The overlap of the ground
state with the manifold of KL states, which suggests that the
CSL may appear for small J2 and J4.

Dxxxiααα = SSSxxxi ·SSSxxxi+ααα, correlations

S(qqq) =
∑
i,j

(〈SSSi ·SSSj〉 − 〈SSSi〉 · 〈SSSj〉) eiqqq·(xxxj−xxxi) (3)

Dααα(qqq) =
∑
i,j

(
〈Dxxxiααα D

xxxj
ααα 〉 − 〈Dxxxiααα 〉〈D

xxxj
ααα 〉
)
eiqqq·(xxxj−xxxi) (4)

with ααα being the vector to one of the three nearest neigh-
bors, and SSSxxxi is an alternative notation for SSSi. Large
values of S(qqq) and/or Dααα(qqq) indicate ordered phase; see
[73] for more information about the various orders.

To distinguish the tetrahedral from the collinear state,
we compute a nematic order parameter, a chiral-chiral
order parameter, [46] and we study the effect of adding a
small TRS-breaking term to the Hamiltonian. As shown
in the Supplemental Material [73], this analysis clearly
shows that large S(M ′) [S(M)] is indicative of tetrahe-
dral [collinear] order.

Additionally, we are most interested in checking
whether the chiral spin-liquid phase appears. For that

reason, we compute OCFT =
√∑4

i=1 |〈ψ|KLi〉|2, the

overlap of the ground state with its projection into the
subspace spanned by the four orthonormalized KL states,
|KLi〉 (given explicitly in Ref. [74]). The degeneracy
comes from a combination of twofold topological and
TRS breaking degeneracy each.

From all of the data presented in Fig. 2, we see that
there are potentially many ordered states, and we present
a phase diagram in Fig. 1(c). Most interesting, however,
is that in the region most relevant for the Hubbard model
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Figure 3. We plot various order parameters that we extract
from ground state wave-function from iDMRG for the Ly = 6
cylinder, and J2 = 0 (J2 = 0.05) for the left (right) column
respectively. In (a)-(b) [(g)-(h)] We plot the spin-spin cor-
relation at the K [Y ] point respectively. We see a jump in
the value corresponds to a phase boundary. (c)-(d) We plot
χ = 〈SSSi · (SSSj × SSSk)〉 averaged over all triangles of the lat-
tice from the iDMRG results at varying bond dimension, χbd.
In (d), the jump in the non-zero value of χ at J4 = 0.19
corresponds to whether the trivial (J4 ≤ 0.19) or semion
(J4 ≥ 0.20) sector of the KL state is the ground state as
evidenced by the entanglement spectra. We include an ex-
trapolation [73] to χbd →∞ where it is non-zero. In (e)-(f),
we plot the dimer-dimer correlation at theM ′ point for dimers
in the x̂ direction, which signals the VBS state. The phase
boundaries estimated from this data are plotted in Fig. 1.

at small J2 and J4 ∼ 0.1−0.15, the overlap with the CSL
is large.

iDMRG– In order to investigate this tendency on
larger system sizes, we focus on the region with J2 ≤ 0.05
and J4 ≤ 0.4 and study it with iDMRG. We consider the
model on infinite cylinders of circumferences Ly = 6 and
8 sites and compute the ground state on the slices J2 = 0
and J2 = 0.05 at various bond dimension χbd. We use
the TeNPy library [75] and give further details of the nu-
merics in the Supplemental Material [73]. The results for
the Ly = 6 cylinder are presented in Fig. 3 and are sum-
marized in Fig. 1(d). We find similar phases as in ED.
The spins order into the 120◦ (zigzag) state at low (high)
J4, respectively. At intermediate J4, we find a phase that
breaks TRS by acquiring a non-zero value of the chiral
order parameter χ = 〈SSSi · (SSSj × SSSk)〉 with i, j, k going
clockwise around a triangle (and 〈·〉 denotes the expec-
tation averaged over all triangles in the lattice), which
we identify as the KL CSL below. Furthermore, we con-
firm the presence of the valence-bond solid (VBS) on the
J2 = 0 slice reported in Ref. [12].

For the Ly = 8 cylinder, we focus on demonstrating

Figure 4. (a) We plot the entanglement spectrum for the
ground state at (J2, J4) = (0.05, 0.18) on the Ly = 8 cylin-
der with χbd = 1600. The y-axis is −s ln(s) where s are the
Schmidt values. The color indicates the charge as specified in
the legend, and different charges are offset slightly from each
other to more clearly show the degeneracy. For each momen-
tum, the counting of the lowest cluster of Schmidt values is
shown for each of the sz ≥ 0 charges in color. They show
the correct pattern for the Kalmeyer-Laughlin state. (b) We
make the same plot as in (a) after adiabatically inserting one
flux quantum through the cylinder. Although the Hamilto-
nian is the same, the entanglement spectrum has changed
indicating a topological degeneracy of the state. (c) During
the flux insertion, we can monitor how much spin has flowed
along the cylinder. We see that exactly a spin-1/2 is pumped
across the system indicating a quantized fractional spin-Hall
effect.

that, at the point (J2, J4) = (0.05, 0.18), the ground state
is the CSL. By running the algorithm at different (J2, J4),
we find the same states as in the Ly = 6 cylinder. In addi-
tion to an unbiased run, we use those states as the initial
state to bias the algorithm towards converging to a non-
CSL state at (0.05, 0.18). By χbd = 1600, however, the
algorithm always converges to the CSL, and an unbiased
run with χbd = 3200 also finds the CSL.

Identification as the CSL– Here, we identify the TRS
breaking phase as the Kalmeyer-Laughlin state by study-
ing the entanglement spectrum and performing a spin-
Hall numerical experiment. We focus on (J2, J4) =
(0.05, 0.18), and show the results of both in Fig. 4. First,
we compute the entanglement spectrum, which shows the
correct counting for the KL state; each of the levels with
spin quantum number |sz| ∈ {0, 1, 2} show the degener-
acy pattern of 1, 1, 2, 3, 5, . . . as we move around the mo-
mentum [76, 77]. Next, we thread flux through the cylin-
der by replacing S+

i S
−
j → S+

i S
−
j e

iθ(yi−yj)/Ly , so that,
upon going around the cylinder, a spin will have picked
up a phase of eiθ. As can be seen in Fig. 4(c), adding
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2π flux moves exactly 1/2 a spin along the cylinder. Ad-
ditionally, although the Hamiltonian has returned to the
original Hamiltonian up to a gauge transformation, the
ground state has a different entanglement spectrum with
half-integer spin quantum numbers. Indeed, inserting
2π flux exchanges the trivial and semion sectors of the
ground state manifold [78] of the KL state on the infinite
cylinder, which is precisely what we see in this numerical
experiment.

Zigzag vs. spinon Fermi surface– In a recent DMRG
study of Eq. (1) at J2 = 0, the authors of Ref. [12] find
a spin-liquid at J4 & 0.3 that they identify as a spinon
Fermi surface (SFS) phase. We instead find that a zigzag
ordered state at finite bond dimension has lower energy
for the parameter choices we studied (i.e. J4 ≤ 0.4) con-
sistent with our ED results. By biasing the initial state
towards the SFS or zigzag state, we compare how the
energy depends on the truncation error of DMRG at the
point J4 = 0.4 [73, 79, 80] which allows us to estimate the
ground state energy at infinite bond dimension. However,
we still find the zigzag state is preferred for the Ly = 6
cylinder where we performed the analysis. Future work
may attempt to clarify whether the SFS appears at other
points in the parameter space; a recent effort in that di-
rection is seen in [33]. Regardless, the SFS does not seem
to be favored in the regime most physically close to the
Hubbard model. These results could also be investigated
by variational Monte Carlo studies since previous works
seem not to have considered a trial state with zigzag or-
der [28, 31, 59].

Discussion As mentioned in the introduction, this
spin-model is motivated by the Hubbard model’s t/U
expansion. In particular, at order t4/U3, the Hubbard
model gives J1 = 4(1 − 7t2/U2)t2/U , J2 = 4t4/U3,
J3 = 4t4/U3, and J4 = 80t4/U3 where J3 is a next-next-
nearest-neighbor Heisenberg interaction [27]. Ignoring
J3, if we use the value of U/t ∼ 10.6 for the transition to
the CSL phase from Ref. [35], we would estimate the tran-
sition to be at (J2, J4) ∼ (0.01, 0.19), essentially where
we find it.

One could still ask why the KL state should be the
ground state for the Hamiltonian Eq. (1), though. In
this section, we connect the above Hamiltonian to the
parent Hamiltonians of Refs. [41–43]. In the Supplemen-
tal Material [73], we derive that, for spin-1/2s, we can
rewrite Eq. (2) as

H4 = −107

88
J4
∑
〈ij〉

SSSi ·SSSj + 3NJ4
129

352

+J4
∑
〈i,j,k,l〉

[
−39

88
χ̂2
ijkl −

21

22
(χ̂2
ijkl)

2 +
8

11
(χ̂2
ijkl)

3

]
,

(5)

where χ̂2
ijkl = O4(i, j, l)OO(k, l, j)+OO(k, l, j)·O4(i, j, l)

for O4/O(i, j, k) = 2SSSi · (SSSj × SSSk) and N is the number
of sites.

We now mean-field decouple (χ̂2
ijkl)

n. In the phase we
are looking for, the scalar chirality χ = 〈O4(i, j, k)〉/2 =
〈OO(i, j, k)〉/2 takes a non-zero value on all triangles.
Rewriting O4/O/2 = χ + ε4/O, expanding, and keeping
only to order ε, we arrive at the Hamiltonian

H =

(
J1 −

107

88
J4

)∑
〈ij〉

SSSi ·SSSj + J2
∑
〈〈ij〉〉

SSSi ·SSSj

+3NJ4
129

352
+ 3NJ4

[
39

11
χ2 +

63

22
82χ4 − 5

11
84χ6

]
−3J4

[
39

11
χ+

21

11
82χ3 − 3

11
84χ5

]
︸ ︷︷ ︸

Jχ

∑
4,O

SSSi · (SSSj ×SSSk).

(6)
By adjusting J4 and J2, we are essentially following
the program of localizing the long-range parent Hamil-
tonian of Refs. [40–43]; however, we also have self-
consistency conditions. In semi-quantitative agreement
with the iDMRG results (Fig. 1(d)), we show that when
J2/[J1 − (107/88)J4] = 0.05 the point J4 = 0.13 pro-
duces a self-consistent solution with χ ≈ −0.116 and
Jχ/[J1 − (107/88)J4] ≈ 0.268 [73], whose ground state
is known to be the KL state [45, 46]. We note that the
mean-field decoupling happens only on the level of the
chiral order parameter and the ground state of the re-
sulting Hamiltonian (6) still has to be found by iDMRG.

Further evidence in support of the validity of this
rewriting comes from the similarity of the phase dia-
gram of Eq. (1) at intermediate J4 in comparison to the
phase diagram of the J1-J2-Jχ Hamiltonian at interme-
diate Jχ studied in Refs. [45, 46]. In particular, we find
the three most relevant competing phases for J4 = 0.16
are the 120◦ order, the CSL, and the tetrahedral order
[73], in analogy to Jχ ∼ 0.2. Additionally, the rewrit-
ing in Eq. (5) is reminiscent of the analysis in Ref. [81]
where the nearest neighbor term is rewritten as related
to [SSSi · (SSSj × SSSk)]2. The author then writes down and
analyzes a free-energy expression to argue that TRS is
spontaneously broken when J2 6= 0. Although that is
not seen in numerics, future work could apply a similar
analysis to our Eq. (5).
Conclusion– We have demonstrated that a CSL ap-

pears in the effective spin model for the Hubbard model
on the triangular lattice at half-filling in the parameter
space near the physically relevant region. Furthermore,
through a rewriting of Eq. (1), we heuristically argued
that the CSL emerges in this model because the four-spin
term favors spontaneous TRS breaking, after which the
mean-field Hamiltonian resembles known parent Hamil-
tonians of the KL state. This result provides some under-
standing of the origin of the CSL in the Hubbard model
found in Refs. [35, 38]. We additionally have found that
the SFS may only be the ground state in a more restricted
part of the phase diagram than previously thought. Be-
yond the triangular lattice, the approach of seeking self-
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consistent numerical solutions of a mean-field-decoupled
Hamiltonian could potentially aid in understanding the
appearance of spin liquids in some other situations.

Note added–A recent preprint [82], using a heuristic
Schwinger boson argument, may provide an alternative
understanding of the origin of the KL state in this model.
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lier, From Néel long-range order to spin liquids in the
multiple-spin exchange model, Phys. Rev. B 62, 6372
(2000).

[58] Y. Fuseya and M. Ogata, Phase Diagram of the Triangu-
lar tJ Model with Multiple Spin Exchange in the Doped-
Mott Region, Journal of the Physical Society of Japan
78, 013601 (2009).

[59] T. Grover, N. Trivedi, T. Senthil, and P. A. Lee, Weak
mott insulators on the triangular lattice: Possibility of a
gapless nematic quantum spin liquid, Phys. Rev. B 81,
245121 (2010).

[60] M. Holt, B. J. Powell, and J. Merino, Spin-liquid phase
due to competing classical orders in the semiclassical the-
ory of the heisenberg model with ring exchange on an
anisotropic triangular lattice, Phys. Rev. B 89, 174415
(2014).

[61] K. Riedl, R. Valent, and S. M. Winter, Critical spin liq-
uid versus valence-bond glass in a triangular-lattice or-

https://doi.org/10.1103/PhysRevB.50.10048
https://doi.org/10.1103/PhysRevLett.82.3899
https://doi.org/10.1103/PhysRevLett.82.3899
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.72.045105
https://doi.org/10.1103/PhysRevB.79.205112
https://doi.org/10.1103/PhysRevB.79.205112
https://doi.org/10.1103/PhysRevLett.106.157202
https://doi.org/10.1103/PhysRevLett.111.157203
https://doi.org/10.1103/PhysRevLett.111.157203
https://arxiv.org/abs/2105.08413
https://arxiv.org/abs/2009.12435
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevX.10.021042
https://arxiv.org/abs/2007.11963
https://arxiv.org/abs/2101.07454
https://arxiv.org/abs/2102.05560
https://arxiv.org/abs/0804.2509
https://doi.org/10.1103/PhysRevB.80.104406
https://doi.org/10.1103/PhysRevB.80.104406
https://doi.org/10.1038/ncomms3864
https://doi.org/10.1103/PhysRevB.89.165125
https://doi.org/10.1103/PhysRevB.89.165125
https://doi.org/10.1088/1367-2630/17/8/082001
https://doi.org/10.1088/1367-2630/17/8/082001
https://doi.org/10.1038/ncomms6137
https://doi.org/10.1038/ncomms6137
https://doi.org/10.1103/PhysRevB.96.075116
https://doi.org/10.1103/PhysRevB.96.075116
https://doi.org/10.1103/PhysRevB.95.035141
https://doi.org/10.1103/PhysRevB.96.115115
https://doi.org/10.1103/PhysRevB.96.115115
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1103/PhysRevLett.112.137202
https://doi.org/10.1103/PhysRevB.92.125122
https://doi.org/10.1103/PhysRevB.92.125122
https://doi.org/10.1103/PhysRevB.91.041124
https://doi.org/10.1103/PhysRevB.91.075112
https://doi.org/10.1103/PhysRevB.91.075112
https://doi.org/10.1023/A:1022588817636
https://doi.org/10.1023/A:1022588817636
https://doi.org/10.1023/A:1022249501044
https://doi.org/10.1023/A:1022249501044
https://doi.org/10.1103/PhysRevB.60.1064
https://doi.org/10.1103/PhysRevB.60.1064
https://doi.org/10.1103/PhysRevB.62.6372
https://doi.org/10.1103/PhysRevB.62.6372
https://doi.org/10.1143/JPSJ.78.013601
https://doi.org/10.1143/JPSJ.78.013601
https://doi.org/10.1103/PhysRevB.81.245121
https://doi.org/10.1103/PhysRevB.81.245121
https://doi.org/10.1103/PhysRevB.89.174415
https://doi.org/10.1103/PhysRevB.89.174415


7

ganic antiferromagnet, Nature Communications 10, 2561
(2019).

[62] K. Seki and S. Yunoki, Thermodynamic properties of an
S = 1

2
ring-exchange model on the triangular lattice,

Phys. Rev. B 101, 235115 (2020).
[63] R. Kaneko, S. Morita, and M. Imada, Gapless spin-

liquid phase in an extended spin 1/2 triangular heisen-
berg model, Journal of the Physical Society of Japan 83,
093707 (2014).

[64] Z. Zhu and S. R. White, Spin liquid phase of the S =
1
2
J1 − J2 Heisenberg model on the triangular lattice,

Phys. Rev. B 92, 041105(R) (2015).
[65] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, Com-

peting spin-liquid states in the spin- 1
2

Heisenberg model
on the triangular lattice, Phys. Rev. B 92, 140403(R)
(2015).

[66] S. N. Saadatmand and I. P. McCulloch, Detection and
characterization of symmetry-broken long-range orders
in the spin- 1

2
triangular heisenberg model, Phys. Rev. B

96, 075117 (2017).
[67] S.-S. Gong, W. Zheng, M. Lee, Y.-M. Lu, and D. N.

Sheng, Chiral spin liquid with spinon fermi surfaces in
the spin- 1

2
triangular Heisenberg model, Phys. Rev. B

100, 241111(R) (2019).
[68] S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Dirac Spin Liq-

uid on the Spin-1/2 Triangular Heisenberg Antiferromag-
net, Phys. Rev. Lett. 123, 207203 (2019).

[69] S. E. Korshunov, Chiral phase of the Heisenberg anti-
ferromagnet with a triangular lattice, Phys. Rev. B 47,
6165 (1993).

[70] K. Kubo and T. Momoi, Ground state of a spin system
with two- and four-spin exchange interactions on the tri-
angular lattice, Zeitschrift für Physik B Condensed Mat-
ter 103, 485 (1997).

[71] T. Momoi, K. Kubo, and K. Niki, Possible chiral phase
transition in two-dimensional solid 3He, Phys. Rev. Lett.
79, 2081 (1997).

[72] L. Messio, C. Lhuillier, and G. Misguich, Lattice symme-
tries and regular magnetic orders in classical frustrated
antiferromagnets, Phys. Rev. B 83, 184401 (2011).

[73] See Supplemental Material at [URL will be inserted by
publisher] for additional data and additional details on
the methods, which includes Refs [83–93].

[74] A. E. B. Nielsen and G. Sierra, Bosonic fractional quan-
tum Hall states on the torus from conformal field the-
ory, Journal of Statistical Mechanics: Theory and Ex-
periment 2014, P04007 (2014).

[75] J. Hauschild and F. Pollmann, Efficient numerical
simulations with Tensor Networks: Tensor Network
Python (TeNPy), SciPost Phys. Lect. Notes , 5 (2018),
code available from https://github.com/tenpy/tenpy,
arXiv:1805.00055.

[76] X. G. Wen, Gapless boundary excitations in the quantum
Hall states and in the chiral spin states, Phys. Rev. B 43,
11025 (1991).

[77] H. Li and F. D. M. Haldane, Entanglement spectrum as a
generalization of entanglement entropy: Identification of

topological order in non-abelian fractional quantum Hall
effect states, Phys. Rev. Lett. 101, 010504 (2008).

[78] Though degenerate in the thermodynamic limit, the en-
ergy of the semion and trivial sector differ by 0.04%
(0.1%) on the Ly = 8 (Ly = 6) cylinder, respectively,
at (J2,J4)=(0.05,0.18).
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