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We propose and experimentally measure an entropy that quantifies the volume of correlations among qubits.
The experiment is carried out on a nearly isolated quantum system composed of a central spin coupled and
initially uncorrelated with 15 other spins. Due to the spin-spin interactions, information flows from the central
spin to the surrounding ones forming clusters of multi-spin correlations that grow in time. We design a nuclear
magnetic resonance experiment that directly measures the amplitudes of the multi-spin correlations and use
them to compute the evolution of what we call correlation Rényi entropy. This entropy keeps growing even after
the equilibration of the entanglement entropy. We also analyze how the saturation point and the timescale for
the equilibration of the correlation Rényi entropy depend on the system size.

Which microscopic entropy can capture the changes under-
gone by an isolated quantum system that evolves in time? The
von Neumann entropy for the entire density matrix of the sys-
tem is not an appropriate choice, because it is constant in
isolated systems. A common approach is to trace out part
of the system and resort to the entanglement entropy, which
quantifies the degree of entanglement between the traced-out
part and the remaining subsystem. Despite the challenges pre-
sented by this quantity, it has been experimentally measured
in a system with 3 superconducting qubits after tomographi-
cally reconstructing the evolved density matrix [1], in a Bose-
Hubbard system with 6 cold atoms and site-resolved number
statistics [2], and in a chain with 20 trapped ions where the
entropy of subsystems with up to 10 ions is obtained through
randomized measurements [3]. The entanglement entropy is
bounded by the quantum Fisher information, and this quantity
also offers a way to detect the flow of information [4, 5]. It
has been experimentally measured with trapped ions [6] and
in nuclear magnetic resonance (NMR) [7].

Another entropy that has received more theoretical than ex-
perimental attention is the participation Rényi entropy, which
measures the spread in time of a non-stationary state in the
Hilbert space. The system is usually prepared in a certain
basis vector and the entropy is computed by summing the
squares of the probabilities for finding the system in its initial
quantum state and in each one of the other basis vectors [8].
Common questions that are addressed with both the partici-
pation Rényi entropy and the entanglement entropy include
the conditions for linear or logarithmic growths in association
with quantum chaos [9–13] or the transition to many-body lo-
calization [14–18], comparisons between their saturation val-
ues and thermodynamic entropies in studies of thermaliza-
tion [2, 19], and analytic predictions for the spread of en-
tanglement [20–23]. One of the differences between the two
entropies is that the participation Rényi entropy is extensive
in the Hilbert space size of the composite system, while the
maximum value of the entanglement entropy does not change
if the size of the subsystem remains fixed.

In this work, we propose a third alternative that we mea-
sure employing NMR coherence detection techniques. NMR
has been used to investigate questions in many-body quan-
tum dynamics, such as many-body localization [24], prether-
malization [25, 26], and the scrambling of quantum informa-
tion [7, 27, 28]. Our experiment demonstrates that NMR plat-
forms are also testbeds for the analysis of entropy growth.

Our entropy quantifies the growth of the volume of correla-
tions as information flows from a central spin (qubit) to its sur-
rounding spins. As devices with ever larger numbers of qubits
become operational, a detailed picture of how quantum in-
formation flows and how the dynamics saturates are essential
for designing and controlling quantum processors. This un-
derstanding is also necessary for classical simulations, which
become impracticable under a substantial growth of correla-
tions.

FIG. 1. Schematic illustration of the flow of information initially
contained in the central spin (orange circle) to the surrounding 15
spins. Each shaded area indicates a cluster of correlated spins.

In our sample, the central spin is initially polarized and cou-
pled with 15 unpolarized surrounding spins. This composite
system is at room temperature and nearly isolated from exter-
nal environments. The experiment employs two main ingre-
dients available to solid-state NMR. One is the possibility to
coherently average out the interactions among the surround-
ing spins, so that the remaining effective Hamiltonian contains
only the interactions of those spins with the central one. Due
to these couplings, as we sketch in Fig. 1, information that is
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initially concentrated in the central spin (orange circle) flows
to the surroundings spins and give rise to clusters of multi-spin
correlations (shades) that grow in time. The second important
element of the experiment is the possibility to collectively ro-
tate the spins and perform a basis transformation that allows
us to monitor the growth of multi-spin correlations by probing
only the central spin [7, 29, 30].

Multi-spin correlations were used in Ref. [24] to measure
the average correlation length and estimate the entanglement
entropy in spin chains. Here, we use the amplitudes of the
multi-spin correlations to compute what we call correlation
Rényi entropy. We find that after the saturation of the entan-
glement entropy, the correlation Rényi entropy keeps growing
for times one order of magnitude longer, during which the
larger clusters of multi-spin correlations build up. The exper-
imental results show excellent agreement with our numerical
simulations. We also perform a scaling analysis of the growth
rate, the saturation value, and the equilibration time of the cor-
relation Rényi entropy. Both the rate and the saturation point
grow logarithmically as the size of the composite system in-
creases, while the equilibration time is nearly independent of
system size.

Experimental System.– We work with a polycrystalline
solid made of an ensemble of Triphenylphosphine molecules.
Each molecule has a central 31P nuclear spin coupled to 1H
spins via the heteronuclear dipolar interaction

HCS-B =

N∑
j

ωjσ
CS
Z
⊗σjZ⊗1

⊗N−1, (1)

where ‘CS’ stands for central spin, ‘B’ for the finite bath with
N = 15 surrounding spins, and σjZ is the Pauli matrix for
the jth bath spin. The coupling constants ωj are determined
by the orientation and the distance of the bath spins from the
central spin, the majority having values below 1200 Hz (see
distribution in [7]).

The initial density matrix of the composite system is ρ(0) =
ρCS(0)⊗ρB(0). Quantum information resides initially in the
central spin, which is in the state ρCS(0) = (1+εσX)/2, where
ε ∼ 10−5 is the nuclear spin polarization at room temperature,
while the surrounding spins are in a fully mixed state ρB(0) =
(1/2)⊗N . The homonuclear dipolar interactions among the
bath spins are averaged out by applying the MREV-8 pulse
sequence [32–34]. During the entire time span of our experi-
ment, the effects of external environments are also under con-
trol [7], so that the evolution of the density matrix of the com-
posite system, ρ(T ) = UCS-B(T )ρ(0)U

†
CS-B(T ), is effectively

described by the unitary propagator UCS-B(T ) = e−iHCS-BT .
As the CS-B system evolves under the ZZ interaction, infor-
mation from the central spin gets shared with the bath spins
giving rise to clusters of multi-spin correlations.

FID and Entanglement Entropy.– The loss of information
from the central spin can be quantified with the free induction

decay (FID). For a single molecule, it is given by

FID(T )=Tr{σcs
X ρ

cs(T )}= ε

2N+1

2N+1∑
k=1

cos(2〈ϕk|HCS-B|ϕk〉T ),

(2)
where ρCS(T ) = TrB[ρ(T )] and |ϕk〉 is one of the 2N+1 spin
configurations in the z-direction, such as | ↑↓↓ . . . ↑〉.

The total NMR signal is induced by an ensemble of
molecules with typically more than 1017 spins. The normal-
ized total signal is obtained by setting ε to 1 and is therefore
what we would obtain also with a fully polarized central spin,
where ρCS(0) = (1+ σX)/2.

The results from numerical simulations for N = 15 are
shown in Fig. 2 (a). Thin lines correspond to representative
random orientations of the molecules and the thick curve gives
the average over 300 random realizations of the principle axis
orientation of the molecule [31]. The curve for the ensemble
average is smooth and quickly saturates at F ∼ 0.
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FIG. 2. Free induction decay (a) and entanglement entropy (b) for
a central spin coupled with 15 surrounding spins via the ZZ interac-
tion in Eq. (1). Thin lines are for each realization of ωj , thick line
gives the average over 300 random orientations of the molecules.
The dotted lines in (b) also give the ensemble average for N = 10
and N = 20. Inset of panel (b): Averaged entangled entropy for
N = 15, 16, . . . , 20 from bottom to top.

The entanglement entropy between the central spin and the
bath is a function of the FID,

Sent(T ) = −Tr
{
ρCS(T )log2[ρ

CS(T )]
}

(3)
= −[f+(T )log2f

+(T ) + f−(T )log2f
−(T )],

where f±(T ) = (1/2) ± FID(T )/2. For the weakly po-
larized central spin of our experiment, the entanglement en-
tropy shows a minor change from Sent(0) ∼ 1 − ε2/2 to
Sent(T >> 0) ∼ 1. However, to provide a more general
comparison between Sent(T ), FID(T ), and our entropy, we
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show in Fig. 2 (b), the entanglement entropy obtained with
a fully polarized central spin. Similarly to the FID, Sent(T )
evolves quickly and then saturates at the maximum entropy
value Sent ∼ 1. For both quantities, the saturation of the dy-
namics happens at T ∼ 200µs. In Fig. 2 (b), we also show
with dotted lines ensemble averages for N = 10 and N = 20.
The slope of Sent(T ) increases with system size, which sug-
gests that the saturation should happen earlier for larger spin
baths. In what follows, we compare these timescales with the
saturation time obtained for the correlation Rényi entropy.

Multi-Spin Correlations.– The evolution of the total density
matrix is given by

ρ(T )=e−iHCS-BT ρ(0)eiHCS-BT (4)

=ρ(0)+iT [ρ(0),HCS-B]−
T 2

2
[[ρ(0),HCS-B],HCS-B] +. . ..

The commutators above lead to terms with a different number
m of non-identity bath spins operators. By arranging these
terms together, ρ(T ) for a single molecule is

ρ(T )=
1

2N+1

{
1

⊗N+1+εCz
0(T )σ

CS
X
⊗1⊗N (5)

+ε

N∑
j

C
z(j)
1 (T )σCS

Y
⊗σjZ⊗1

⊗N−1

+ε

N∑
j1<j2

C
z(j1j2)
2 (T )σCS

X
⊗σj1Z

⊗σj2Z
⊗1⊗N−2 + · · ·

}
,

where C
z(j1,j2...jm)
m is the amplitude of the clusters with the

same m (see a detailed example for N = 2 in [31]). At
T = 0, Cz

0(0) = 1 and C
z(j1j2...jm)
m6=0 (0) = 0. For T > 0,

the amplitudes for the terms with m > 0 increase, indicating
that clusters of correlated spins build up and grow.

The uncorrelated term with amplitude Cz
0(T ) is the only

one that survives the partial trace used to obtain ρCS(T ) in
Eq. (2) and therefore the only one that contributes to FID(T ).
This is also the case for the entanglement entropy, since both
quantities are related [Eq. (3)]. The decay of Cz

0(T ) describes
the loss of information from the central spin, which causes
the decline of the observable NMR signal and the growth of
the entanglement entropy. However, to better understand the
dynamics of the composite system, one needs a quantity that
captures also the build-up of multi-spin correlations as deter-
mined by the higher order terms with m > 0.

The NMR experiment is designed to measure the coher-
ence order intensities. To explain what this means and how
the measurement is done, let us write the bath spin oper-
ators in Eq. (5) in terms of coherence raising/lowering op-
erators in the x-quantization basis σX

± := (σY ± iσZ)/
√
2

[35]. The term σCS
X σj1Z σ

j2
Z , for example, expands into four

terms, −12 {σ
CS
X σXj1

+ σXj2
+ + σCS

X σXj1
− σXj2

− − σCS
X σXj1

+ σXj2
− −

σCS
X σXj1
− σXj2

+ }. The difference between the number n+ of σX
+

operators and the number n− of σX
− operators defines the co-

herence order n = n+ − n−. Therefore, the first one of those
four terms above has coherence order n = 2, the second one
has n = −2, and the last two have n = 0.

According to the coherence orders, Eq. (5) becomes

ρ(T )=
1

2N+1

{
1

⊗N+1+ε
∑
k

Cx,k
0 (T )ρx,k0 (6)

+ ε
∑
k

[
Cx,k
+1(T )ρ

x,k
+1 + Cx,k

−1(T )ρ
x,k
−1

]
+ ε

∑
k

[
Cx,k
+2(T )ρ

x,k
+2 + Cx,k

−2(T )ρ
x,k
−2

]
+ · · ·

}
,

where ρx,kn represents each term with coherence order n
(see [31]). Our experiment directly measures the intensities
|Cx
n(T )|2 =

∑
k |Cx,k

n (T )|2.
The essence of the coherence detection tech-

nique is to exploit the collective response of the
spins. At time T , we apply the encoding pulse
Rx(φ) = exp

(
iφ2
∑
j 1

CS⊗11⊗ · · ·⊗σjX⊗ · · ·⊗1N
)

that
collectively rotates the bath spins by an angle φ [29, 30, 36].
The purpose of this operation is to encode each coherence
order in a phase factor einφ (see [31]). Subsequently, the
CS-B dynamics is reversed by applying a π-pulse to the
central spin and the composite system is evolved for another
interval T . After the echo, the resulting density matrix at 2T
is [31]

ρφ(2T )=
1

2N+1

{
1

⊗N+1+ε

N∑
n=−N

einφ|Cx
n(T )|2σCS

X
⊗1⊗N

}
,

(7)
and the observed NMR signal for a single molecule is
S(2T ) = Tr[TrB[ρφ(2T )].σ

CS
X ]. Just as in the case of FID(T ),

the total signal is obtained for a large ensemble of molecules.
The signal is recorded for various increments of rotation

angle φ ∈ [0, 2π]. By performing a Fourier transform of this
array of observed signals, we obtain the intensities |Cx

n(T )|2,
with

∑N
n=−N |Cx

n(T )|2 = 1. Note that the NMR experiment
is designed so that all the information about the coherence
orders is contained in the central spin, which is the only spin
experimentally probed.

The evolution of the coherence orders intensities is shown
in Fig. 3 (a). The agreement between the experimental data
and the numerical simulations for orders up to n = −6, 6
is excellent. Higher order terms develop at even longer times
and are more challenging to detect experimentally. This figure
reveals the details of how information lost from the central
spin gets shared with the surrounding qubits.

Correlation Rényi Entropies.– We use the coherence order
intensities |Cx

n(T )|2 to compute the correlation Rényi entropy.
The first and second order correlation Rényi entropies are re-
spectively defined as

S1 = −
N∑

n=−N
|Cx
n(T )|2log2|Cx

n(T )|2, (8)

S2 = −log2

(
N∑

n=−N
|Cx
n(T )|4

)
. (9)
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FIG. 3. Evolution of the coherence orders intensities |Cx
n(T )|2 in (a)

and for longer time in the inset, and the first and second order cor-
relation Rényi entropies in (b). Symbols represent the experimental
data and solid lines give the numerical results for N = 15 averaged
over 300 orientations of the molecule.

They describe the growth of multi-spin coherences. Absence
of correlations implies that Smin

1 = Smin
2 = 0, while the homo-

geneous distribution of coherence orders, that is |Cx
n(T )|2 =

(2N + 1)−1, leads to the maximum value, Smax
1 = Smax

2 =
log2(2N + 1).

The experimental data for both entropies are compared with
numerical simulations in Fig. 3 (b). One sees that the growth
of S1,2 is not complete during the timescale of our exper-
iment. The correlation Rényi entropy keeps increasing for
T > 500µs, implying that the growth of the volume of corre-
lations has not yet ceased and correlations of higher orders are
still developing. In fact, as the simulations for different bath
sizes in the inset of Fig. 4 (a) indicate, saturation happens at
T ∼ 2000µs. This contrasts with the entanglement entropy
displayed in Fig. 2 (b), where the curves are already flat for
times one order of magnitude shorter, at T ∼ 200µs.

The discrepancy between the timescales for the equilibra-
tion of S1,2 and Sent motivated us to have a closer look at the
saturation of the entanglement entropy. By significantly in-
creasing the scale in the y-axis of Fig. 2 (b), we observe in the
inset that Sent for different bath sizes actually keeps increas-
ing for T > 200µs. It is only because we have a detailed
picture of the growth of the volume of correlations, that we
could have expected the existence of this residual increase.
The evolution of the entanglement entropy, just as the FID,

reflects the loss of information from the central spin, as char-
acterized by the decay of Cz

0(T ), and this decay happens si-
multaneously with the growth of the higher order correlations.
While the necessary precision to detect the growth of Sent for
T > 200µs would be experimentally unreachable, the experi-
mental increase of the Rényi entropies S1,2 at these timescales
is evident in Fig. 3 (b).

Equilibration.– The complete saturation of the correlation
Rényi entropy takes place once the clusters of correlated spins
stop growing, that is, when the coherence orders intensities
become constant, as seen in the inset of Fig. 3 (a). To estimate
the timescale for the equilibration and how it depends on the
bath size, we study numerically in Fig. 4 (a) the evolution of
S2 for baths ranging from N = 5 to N = 30.
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FIG. 4. In (a): Evolution of the correlation Rényi entropy S2 for
N = 5, . . . 30 averaged over various orientations of the molecules.
The thick red lines correspond to bath sizes that are multiples of 5.
The inset in (a) shows the curves up to saturation and S2 is indicated
with dashed lines. In (b): scaling analysis of the factor β in S2(T ) ∼
−4.18 + β log2(T ) (symbols) fitted with 0.65 + 0.07 ln(N) (solid
line). In (c): scaling analysis of the saturation values of S2 (symbols)
fitted with 1.34 + 0.71 ln(N) (solid line).

We compute the saturation value of the entropy, S2, by av-
eraging the values of S2(T ) for T > 5000µs, when the curves
are clearly flat, as seen in the inset of Fig. 4 (a). We then obtain
the equilibration times Teq by verifying where each numerical
curve of S2(T ) first crosses its saturation point. We find that
Teq = (2052.1± 163.7)µs for N = 5 . . . 30.

The fact that Teq is nearly independent of the system size
happens because the growth rate of S2(T ) and also its sat-
uration value scale as ln(N). This is verified by fitting the
evolution of S2 in the interval 50µs < T < 300µs with the
logarithmic function α + β log2(x), where α and β are fit-
ting constants. The fitting improves for larger system sizes
and we find that the factor β increases as ln(N), as shown in
Fig. 4 (b). And the scaling analysis in Fig. 4 (c) confirms that
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S2 also increases as ln(N).
Conclusion.– We introduced and experimentally measured

the correlation Rényi entropy. This is a novel entropy measure
that relies on the volume of multi-spin correlations. While
the entanglement entropy, Sent, quantifies the loss of informa-
tion from the central spin, the correlation Rényi entropy, S1,2,
provides a more detailed picture of the dynamics of the com-
posite system by capturing how that information gets shared
between the central spin and the bath spins through the corre-
lations. Most notably, S1,2 saturates at a time that is one order
of magnitude larger than the saturation time for Sent.

The correlation Rényi entropy opens interesting perspec-
tives for the experimental detection of many-body correla-
tions growth and the spread of quantum information in quan-
tum devices. The experimental resources needed to measure
this entropy scales linearly with the size of the composite sys-
tem, and the only requirements are that the evolution Hamil-
tonian can be inverted and that the spins can be collectively
rotated. We also expect applications in quantum error correc-
tion codes, where information is encoded in long-range quan-
tum many-body states, and in the detection of the propagation
speed of correlations.
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