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Many advancements have been made in the field of topological mechanics. The majority of the
works, however, concerns the topological invariant in a linear theory. We, in this work, present a
generic prescription of defining topological indices which accommodates non-linear effects in me-
chanical systems without taking any approximation. Invoking the tools of differential geometry, a
Z-valued quantity in terms of a topological index in differential geometry known as the Poincaré-
Hopf index, that features the topological invariant of non-linear zero modes (ZMs), is predicted.
We further identify one type of topologically protected solitons that are robust to disorders. Our
prescription constitutes a new direction of searching for novel topologically protected non-linear
ZMs in the future.

PACS numbers:

Mechanical systems offer a remarkable connection be-
tween physics and engineering. Through their simplic-
ity, they have inspired both ideas at the foundation
of theoretical physics and a sense of control over our
physical world. In the recent field of topological con-
densed matter, following hints that topology can play a
role in non-linear fine-tuned mechanical systems1, Kane
and Lubensky2 uncovered a connection between topolog-
ical insulators3–6 and linearized balls-and-springs mod-
els. With importance in the field of metamaterials7–21

and magnetics22,23, they realized if constraints define the
system, zero modes (ZMs) can be topologically protected
by TKNN-like topological invariant24.

It was quickly realized that Kane and Lubensky’s ZMs
in the case of a chain model they construct can sur-
vive back into the non-linear regime and become bulk
solitons25. But a formally identical origami system was
identified that does not exhibit these solitons26. More
non-linear ZMs were found in mechanical systems in nu-
merical simulations27,28. In a one-dimensional chain, a
domain wall separating two distinct polarizations can be
identified by constructing a sequence of consecutive maps
on the space of ZMs of a single unit cell29. However, that
does not quite guarantee that this domain wall can move
continuously along the chain like a soliton. Thus, the
existence of a soliton relies on the exact parameters of a
model30. To the best of our knowledge, however, it re-
mains unclear if solitons observed in generic mechanical
systems are always topologically protected or not, and if
so, what is the topology to classify them?

In this paper, we develop an exact theory to study the
topological protection of the kinematics of periodic mech-
anisms satisfying holonomic constraints such as those
that arise in e.g. linkages and origami. Using the con-
cept of differential geometry, our theory predicts the exis-

tence of a Z-type topological index µ or ν. To illuminate
its applications, we further use this topological index to
generate another topological index we call I that reveals
whether or not a topologically protected ZM can prop-
agate through the system. Applying this to the Kane-
Lubensky (KL) chain, we realize the topology to classify
the (two) distinct phases of the KL chain, namely the
“flipper” and the “spinner”, and further show that the
existence of the spinner soliton is topologically protected
and robust to disorders (unlike the flipper). In distinc-
tion, the origami chain does not support any soliton de-
spite the superficial similarity of its linear ZMs to those
of the KL chain.

We start by characterizing the type of mechanical sys-
tem we are interested in. We assume that the state
of the system can be described by generalized degrees
of freedom, θ = (θ1, θ2, · · · , θn), and that the system
is characterized by a set of (spring) extensions e(θ) =
(e1(θ), · · · , em(θ)). While the elastic energy of such a
system can be written as E(θ) =

∑
i kiei(θ)2 for a set

of moduli ki > 0, here we will only be interested in
the ground state configurations specified by θ̄ such that
e(θ̄) = 0. If we work with a mechanical linkage or a
spring network as in Ref. 2, we can think of θ repre-
senting the positions of the vertices of our network and
ei(θ), the extension of the springs (from their equilib-
rium lengths). In this language, the Jacobian ∂ei(θ)/∂θj
is termed the rigidity matrix.

Before presenting our prescription of defining topolog-
ical indices, it is useful to review two examples that pose
some apparent paradoxes in defining the topological in-
variant of the linear ZMs. First, for the KL chain, it
is often easier to express the generalized coordinates in
terms of the rotation angle of a series of rotors so that
θi is the angle between the ith rotor and the vertical axis
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FIG. 1: (a) The KL chain has an edge mode on either the left
or right edge. (b) The origami chain has an edge mode on
either the left or right edge.

as shown in Fig. 1 (a). The extension of the ith spring
which connects the ith rotor with the (i+ 1)th rotor then
takes the form ei(θ) = f(θi, θi+1), where

f(θi, θi+1) = [(a+ r sin θi+1 − r sin θi)
2 (1)

+(r cos θi+1 + r cos θi)
2]1/2 − L,

a, r, and L are the distance between two consecutive
pivot points, the radius of the rotors, and the equilibrium
length of the springs, respectively. For an open chain of
n springs (and n+1 rotors), if we choose θn+1 = θ1, then
we have exactly as many constraints as the degrees of
freedom, making the system isostatic.

In the second example of the origami chain26, we in-
stead use θi to denote the supplement of the dihedral
angle of one of the folds of each vertex, also called the
fold angle [Fig. 1 (b)] (see Appendix). In this case,

f(θi, θi+1) = A sin2(θi/2)−B sin2(θi+1/2) + ε, (2)

where 0 < A < 1, 0 < B < 1, and ε are defined in
Appendix A. While it is straightforward to generalize the
above equations to any periodic structure, for simplicity,
we specialize to the examples mentioned above focusing
on Eq. (1)-(2) for the remainder of this paper.

In both the KL chain and the origami chain, if we
assume a uniform solution of e(θ̄) = 0, following Ref. 2,
the polarization is defined as the integer

Q =
1

2πi

∫ π

π

dq
∂

∂q
ln
[
∂1f(θ̄, θ̄) + ∂2f(θ̄, θ̄)eiq

]
. (3)

where ∂a implies the derivative with respect to the ath

variable in the argument of f . When |∂2f(θ̄, θ̄)| >
|∂1f(θ̄, θ̄)|, Q = 0 and when |∂2f(θ̄, θ̄)| < |∂1f(θ̄, θ̄)|,
Q = 1. These two values of Q define two distinct topo-
logical phases. For finite systems, the bulk is rigid for
both Q = 0 and 1, however, the feature that distinguishes
these two phases is the location of the linear ZM.

The behavior above is exhibited by the linear ZMs in
both the KL chain and the origami chain, as it should.

FIG. 2: (a) The vector field e(θ̄) is indicated by arrows. The
winding number µ(θ̄) is a topological index which measures
how many times the vector field rotates along Sθ̄. (b) The
total intersection number I is a homotopy invariant of a ZM
and counts the minimal number of periodic configurations
along that ZM. (c) A ZM with a deformed trajectory has the
same total intersection number as (b).

But in the KL chain (and not the origami chain), certain
non-linear deformations can propagate across the system
resulting in the edge mode appearing on the other side.
In that sense, the polarization defined by Eq. (3), though
an integer, is not necessarily topologically robust.
A topological index for isostatic systems—To under-

stand why the two models discussed above behave so
differently in presence of non-linearity, we introduce a
prescription of defining topological indices in terms of
the Poincaré-Hopf index31 that accommodates non-linear
constraints as well. The definition of the index involves
a generic non-linear map e(θ) (Eq.1 and Eq.2 are two
examples we are focused on in this work) which can be
thought of as the vector field on the space of generalized
coordinates as shown in Fig. 2 (a). In the isostatic case
(m = n), for a solution θ̄ satisfying e(θ̄) = 0, we can de-
fine an index µ(θ̄) by computing the winding number of
the map e(θ) on the (n−1)-dimensional sphere enclosing
θ̄, Sθ̄ by integrating the differential form

µ(θ̄) =
1

(n− 1)!An−1

∮
Sθ̄

ei1dei2 ∧ ... ∧ deinεi1,i2,...,in
(e2

1 + e2
2 + ...+ e2

n)n/2
,

(4)
where An−1 is the surface area of a unit (n − 1)-
dimensional sphere. When, for example, n = 2, it yields
the so-called first Chern number which frequently ap-
pears in classifying the topology in electronic band struc-
tures. µ(θ̄) is well-defined for any isolated solution θ̄ even
when the Jacobian is not full rank. It is also known as the
degree of a map32 which implies µ(θ̄) predicts the mini-
mum number of non-linear ZMs that would pass through
the configuration θ̄ after releasing one constraint.

When the Jacobian is full rank, µ(θ̄) =
sgn[det(∂ei(θ̄)/∂θj)]

33. Under this condition, the
configuration θ̄ is structurally stable meaning that µ(θ̄)
is invariant under small, continuous deformations of
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the constraint functions e(θ). The idea of topological
protection in a linear theory can now be cast as the
following: without any symmetry, the phonon spectrum
is characterized by a Z2 invariant protected by a bulk
gap that closes when the Jacobian is not full rank.

A deeper physical meaning of µ(θ̄) relies on the form
of constraints. For example, in the KL and origami
chain with periodic boundary conditions, for a uniform
solution θ̄, µPBC(θ̄) can be simplified to µPBC(θ̄) =
sgn{[∂1f(θ̄, θ̄)]n − [−∂2f(θ̄, θ̄)]n} which only depends
on the magnitude of ∂1f(θ̄, θ̄) and ∂2f(θ̄, θ̄). Conse-
quently, µPBC(θ̄) = 1 when |∂1f(θ̄, θ̄)| > |∂2f(θ̄, θ̄)| and
µPBC(θ̄) = −1 when |∂1f(θ̄, θ̄)| < |∂2f(θ̄, θ̄)|. Therefore,
µPBC(θ̄) = 2Q− 1, where Q is the topological polariza-
tion discovered by Kane and Lubensky2.
A topological index for non-isostatic systems—So far,

the topological index µ discussed above only applies to an
isolated zero-energy configuration θ̄ in an isostatic sys-
tem. To capture the topology of a non-linear ZM in a
non-isostatic system, we now extend to derive another
similar topological index ν. To do so, we look at this
topological index from another perspective by first defin-
ing a tangent d-form

T i1···id = εi1···idj1···jn−d∂j1e1 · · · ∂jn−d
en−d, (5)

where d denotes the dimension of the non-linear ZM.
Since T i1···id(θi1 · · ·θid) = 0 for any vector θij normal to

the space of ZMs, we can think of T i1···id as defining the
tangent space of non-linear ZMs. For an open KL chain,
the number of constraints is one less than the number of
the degrees of freedom, and so d = 1. Then T is a vector
field that is everywhere tangent to a non-linear ZM. In
this case, the non-linear ZM can be found as the solution
to the first-order differential equation ∂sθ(s) = T [θ(s)].
So long as T (θ) is a smooth non-vanishing function of θ,
the integral curves of T (θ) will be smooth as well. For
any surface not parallel to the tangent T (θ), we can de-
fine an intersection number at the point θ̄ where the ZM

intersects with the surface as ν(θ̄) = sgn
[
T (θ̄) · N̂(θ̄)

]
where N̂(θ̄) is the unit normal to the surface at θ̄. Alter-
natively, we can define a vector g(θ) = (e1, e2, ..., en−1, h)
where h is the function describing the surface. Then ν(θ̄)
can be computed as

ν(θ̄) =
1

(n− 1)!An−1

∮
Sū

gj1dgj2 ∧ · · · ∧ dgjnεj1j2...jn
(g2

1 + g2
2 + ...+ g2

n)n/2
,

(6)
similar to the way µ was defined earlier in Eq. 4. This
results in ν(θ̄) = sgn [det ∇g(θ̄)] when the Jacobian
of g, denoted ∇g(θ̄), is full rank. The function h can
also be thought as an auxiliary constraint used to obtain
information of a non-linear ZM. For example, in the KL
and origami chain, when h = en = f(θn, θ1) as defined
previously, ν(θ̄) would be µPBC(θ̄).

Topological distinctions between the KL chain and
origami chain—Based on the earlier discussion of µ,
there always exists, at least, one non-linear ZM pass-
ing through a uniform solution in both the open KL

and open origami chain because µPBC = ±1 for each
uniform solution in both cases. However, to understand
whether this non-linear ZM can propagate from one site
to another, we need to specialize to a local topological in-
dex νloc(θ̄) in a single cell (which contains two sites with
one constraint) with a two-dimensional space specified by
(θ1, θ2) and consider h specified by θ2 − θ1 = 0. In this
example, every time the non-linear ZM for a single cell
(SCZM) crosses this plane at θ̄, we can associate an index
νloc(θ̄) with the intersection point as defined above [see
Fig. 2 (b)]. With this in mind, for continuous deforma-
tions of the trajectory of the SCZM [see Fig. 2 (c)], new
uniform configurations can be created or annihilated in
pairs of opposite indices, but the total intersection num-
ber I =

∑
i νloc(θ̄i) of the SCZM remains invariant.

The idea of topological protection, defined as it is in
terms of an inherently linear concept of the phonon spec-
trum as highlighted before, can be carried over in a ro-
bust way to non-linear mechanical systems as follows: the
space of ZMs for one set of constraints can be continu-
ously deformed into the space of ZMs of another set of
constraints as long as no ZM intersects with others or
itself during deformations. Then it will become clearer
why the KL chain and the origami chain behave so differ-
ently despite their superficial similarity after computing
the intersection number of a single cell.

First, Fig. 3 (a)-(b) show the solutions to Eq. (1)
for a single cell of the KL chain (consisting of a pair
of rotors). Uniform solutions, namely, θ1 = θ2 (there
are four) correspond to the points where the non-linear
SCZMs cross the plane θ1− θ2 = 0. We note that, in the
non-linear model, the trajectory of a non-linear SCZM
passes through either two or all four of these (uniform)
solutions depending on the values of L, r, and a. The
total intersection number I of a non-linear SCZM satis-
fies the following condition: when a < L < 2r − a, there
are two distinct SCZMs with I = +2 [blue in Fig. 3
(a)] and I = −2 [red in Fig. 3 (a)]. Thus, each SCZM
passes two distinct uniform solutions at least twice and
these two uniform solutions are necessarily connected via
the trajectory of the SCZM. This case is known as the
“spinner” phase of the KL chain, characterized by spin-
ner solitons whose existence is topologically protected.
When 2r − a < L < 2r + a, on the other hand, we have
only one SCZM with a total intersection number I = 0
[this SCZM passes through all four solutions as in Fig. 3
(b)]. This is dubbed the “flipper” phase. In this phase,
the trajectory of the SCZM can be continuously deformed
by tuning, e.g. L, such that all four solutions get anni-
hilated in pairs of opposite intersection numbers exactly
at L = 2r + a, and no solution exists beyond that.

Next, we consider the origami chain. A single cell in
this model is described by Eq. 2. The uniform solutions
are given by the zeros of f(θ, θ) = (A−B) sin2(θ/2) + ε,
which only exist when (B−A)/ε > 1. As shown in Fig. 3
(c)-(d), there are two distinct regimes: (i) 0 < ε < A−B,
and (ii) A−B < ε < 0, both of which have two uniform
solutions with opposite sign of νloc and the two SCZMs
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FIG. 3: (a)-(b) are the spaces of ZMs of a single cell for the
KL chain. (c)-(d) are the spaces of ZMs of a single cell for
the origami chain. The color is only a label (blue for I > 0
and red for I ≤ 0) and does not have a quantitative meaning.

correspond to the total intersection number of I = +1
[blue in Fig 3 (c) or (d)] or I = −1 [red in Fig 3 (c) or (d)].
As seen in Fig 3 (c)-(d), each SCZM crosses the line de-
fined by θ1 = θ2 at least once. If the system is distorted,
it is possible to cross this line multiple times, but the
total intersection number remains unchanged. We con-
clude that the existence of uniform solutions is, indeed,
topologically protected. To eliminate them, it is neces-
sary to distort the system through a topological phase
transition by joining the trajectories of the two SCZMs.
Ultimately, this requires tuning the system through one
of the two situations: ε = 0 or A−B + ε = 0.

It is clear that when a SCZM has a total intersection
number |I| ≥ 2, it must have at least two uniform solu-
tions joined by a smooth trajectory. However, this does
not immediately extend to a larger chain of n (n > 2)
unless the following (sufficient) condition P is met: for
a given SCZM, either the map from θi to θi+1 ∀i or the
reverse map is injective.

Lets take the spinner for an example and denote a ZM
for the n-site chain, which contains n rotors and n − 1
springs, by Cn. In this notation, the black curve on the
bottom plane in Fig. 4(a) is C2 and the red curve is C3.
Since, in this case, we have |I| = 2, the projection of
C3 onto a constant θ3 plane always yields C2 (it, in fact,
extends to |I| ≥ 2). This statement can be understood
in the following way: we are looking for a solution for
f(θ2, θ3) = 0 provided f(θ1, θ2) = 0. A sufficient condi-
tion for this is that the solution of f(θ2, θ3) = 0 on the

FIG. 4: (a) The ZM for the n = 2, 3 KL chain (the spinner
case). The black curve C2 on the bottom plane is a single loop
on two-dimensional torus, and the red curve C3 is a single loop
on three-dimensional torus. (b) A soliton on the disordered
KL chain.

θ2 − θ3 plane wraps around θ2 at least once (this holds
when |I| ≥ 2) guaranteeing a θ3 for a given θ2 that also
satisfies f(θ1, θ2) = 0. If the above condition is met,
there must exist at least one θ3 for a given (θ1, θ2) that
satisfies both the constraints. Thus, for each point on
the black curve C2, we can always find at least one point
on the red curve C3 projected onto it.

We can now prove that the two uniform solutions are
connected by C3 which we have shown to hold for C2

previously. This we prove by contradiction. If we assume
that there are two disconnected parts of C3 while C2

is connected, there must exist two points that have the
same θ1 and θ2 but distinct θ3. However, this contradicts
the fact that the map from θ3 to θ2 is injective, and
thus, C3 must be connected. The argument can easily
be generalized to Cn for n > 3. Thus, we conclude that
there must exist at least two uniform solutions joined
by a ZM in a n-site chain. This ZM is a soliton (for
the non-linear model) that is topologically protected and
robust to disorders as long as each SCZM corresponds
to a total intersection number |I| ≥ 2 and satisfies the
condition P mentioned above. We emphasize, a soliton
of this kind exists even in a disordered (a < Li < 2r −
a, Li chosen randomly) KL chain which has the total
intersection number I = ±2 in each cell as shown in
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Fig.4 (b).
We conclude by emphasizing that new topological in-

dices can be generated in similar manners following our
prescription to classify non-linear ZMs. For instance, a
n− 1-dimensional sphere around an isolated zero-energy
configuration (solution) is chosen in this work as the base
manifold to construct a bundle with Z-type topological
invariant. For higher-dimensional manifolds of such so-
lutions, different choices of the base manifold can lead to
different types of topological invariants34. Exploring the
physical significance of those topological indices consti-

tutes a new direction of searching for novel topologically
protected non-linear ZMs in the future.
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