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Dissolving small amounts of polymer into a Newtonian fluid can dramatically change the dynamics
of transitional and turbulent flows. We investigate the spatiotemporal dynamics of a submerged jet
of dilute polymer solution entering a quiescent bath of Newtonian fluid. High-speed digital Schlieren
imaging is used to quantify the evolution of Lagrangian features in the jet revealing a rich sequence
of transitional and turbulent states. At high levels of viscoelasticity, we identify a new distinct
transitional pathway to elasto-inertial turbulence (EIT) which does not feature the conventional
turbulent bursts and instead proceeds via a shear-layer instability that produces elongated filaments
of polymer due to the nonlinear effects of viscoelasticity. Even though the pathways to the EIT state
can be different, and within EIT the spatial details of the turbulent structures vary systematically
with polymer microstructure and concentration, there is a universality in the power-law spectral
decay of EIT with frequency, f−3, independent of fluid rheology and flow parameters.

The loss of stability in inertially-dominated flows of di-
lute polymer solutions (typically ≲ 100 ppm) results in a
turbulent state known as elasto-inertial turbulence (EIT)
with distinctly different structural features compared to
Newtonian turbulence (NT) or elastic turbulence (ET)
[1]. While the onset of NT is characterized by inter-
mittent turbulent bursts, or “puffs”, between extended
laminar regions, these puffs disappear when the poly-
mer concentration increases and, as the authors note,
a ‘different type of disordered motion’ sets in [1] which
is not well-understood. We show that at high levels of
viscoelasticity, i.e., high elasticity numbers, this distinct
inertio-elastic state provides a new pathway to EIT in a
submerged fluid jet.

Recent experiments and simulations [2–5] in planar chan-
nel flow show that increasing the polymer concentration
results in a transition to turbulence at lower Reynolds
number than for a Newtonian fluid due to the existence
of unstable wall modes [6] and center modes [7]. Follow-
ing the transition to EIT, the growth of near-wall vortical
structures in the channel is predominantly in the span-
wise direction, as opposed to NT where vortical struc-
tures grow in both the spanwise and streamwise direc-
tions [1, 2]. Moreover, EIT displays intermittent ‘hiber-
nating’ turbulent states, i.e., long-lived recurrent tran-
sient dynamical modes that are distinctly different to NT
[8] and have recently been shown to be instability waves
[9–11]. Characteristic dynamical features of EIT include
weaker vortices, streamwise streaks, and a reduction in
the average total shear stress at the wall, even as the
normal stress differences in the flow increase [12]. In ad-
dition to changes in the shape of the vortical structures in
the flow, the spectral characteristics of the instantaneous
velocity profile also change significantly when viscoelas-
ticity is present [13, 14] and important discrepancies exist
between different reported values for the exponent char-
acterizing the power-law decay of the energy spectrum

[15], making quantitative measurements of the velocity
field necessary [16].

A limited number of studies have considered the struc-
ture of EIT in jets or other spatially developing flows.
Early experimental work using laser Doppler velocimetry
showed that viscoelasticity suppresses the smaller scale
eddies in a submerged jet [17]. Recently, direct numer-
ical simulations of viscoelastic planar jets have shown
that the viscous dissipation rate in a turbulent polymeric
jet is strongly attenuated, with a significant portion of
the turbulent energy flux being stored elastically in the
stretched polymer chains and subsequently returned to
the flow [18]. This energy storage changes the turbu-
lent structures leading to a reduction in the spreading of
the jet, i.e., making the jet narrower, as the Weissenberg
number (Wi) increases.

Despite these recent theoretical advances in understand-
ing EIT, there is a lack of quantitative experimental work
studying the associated flow structures. We are aware of
only one particle image velocimetry (PIV) study for the
specific case of grid turbulence in a channel, which inves-
tigated the power-law exponent characterizing the decay
in the spectrum of velocity fluctuations in a dilute poly-
mer solution at a fixed Reynolds number and polymer
molecular weight [19]. A more recent PIV study docu-
mented the unique process of ‘re-laminarization’ that is
possible in complex viscoelastic flows [20]. For a certain
range of Reynolds and Weissenberg numbers, the interac-
tion between fluid inertia and polymer stresses is strong
enough to eliminate Newtonian-like turbulence, but is too
weak to trigger EIT, thus enabling access to a new stable
state. However, the combination of the relatively weak
vortical structures in EIT (as compared to NT) and the
inherent difficulties of PIV measurements close to rigid
walls of tubes and channels have prevented direct obser-
vation of the spanwise vortical structures predicted by
numerical simulations [21].
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FIG. 1. Flow transitions in a submerged jet; (a-e) Laminar ( ), turbulent bursts ( ), Newtonian turbulence (NT, ), elasto-
inertial filaments (EIF, ), and elasto-inertial turbulence (EIT, ) state. (f) State diagram for Lmax = 91.4, i.e., PEO with
Mw = 8 × 106 g/mol. To represent the Newtonian jet on this state diagram, we use a linear ordinate for El ≤ 10−3.

Inspired by early qualitative imaging of viscoelastic tur-
bulence [22, 23], we use high-speed Schlieren imaging
to reveal the local fluctuating concentration field in ei-
ther a submerged Newtonian or viscoelastic jet. Un-
like PIV, Schlieren imaging does not require addition of
particles as flow tracers, and reveals the boundaries of
the fine-scale material elements along the refractive in-
dex gradient in a Lagrangian manner as they are con-
vected through the domain. See Supplemental Material
for details on our Schlieren imaging system, which in-
cludes Ref. [24]. We study the transition to turbulence
and the resulting spatio-temporal dynamics of an un-
forced submerged jet of dilute polymer solution entering
a quiescent bath of its Newtonian solvent. We identify
a distinct transitional pathway to EIT, which eliminates
the turbulent bursts observed in the transition to NT.
Instead, a convective shear layer instability produces lo-
cally elongated filaments of viscoelastic material, which
we term elasto-inertial filaments (EIF). Remarkably, even
though the pathways to EIT and the spatial features of
EIT vary with changes in fluid properties including poly-
mer molecular weight and concentration, the temporal
features of the unsteady jet far from the nozzle are uni-
versal and characterized by a power-law frequency decay
that is markedly different from the spectrum of Newto-
nian turbulence.

In our experiments, a submerged jet of dilute aqueous
polyethylene oxide (PEO) solution enters a bath of wa-
ter. To systematically vary the viscoelasticity, we use a
range of polymer molecular weights, Mw, and concentra-
tions, c; the rheological characterization and properties

of the solutions discussed in this paper are summarized in
Section 3 and Table S1 provided in the Supplemental Ma-
terial and includes Ref. [25–30]. All of the solutions are
dilute with c/c∗ < 1, where c∗ is the coil overlap concen-
tration. To attain the required refractive index gradient
for Schlieren imaging, 1% wt. sucrose is added to all so-
lutions. The addition of sucrose changes the viscosity by
∼ 1% and does not affect the elasticity of the solutions.
The relevant dimensionless numbers characterizing the
jet are (i) the Reynolds number Re = ρU(2R)/η0, where
ρ is the fluid density, U is the mean flow velocity at the
nozzle, R = 257 µm is the radius of the jet at the nozzle
exit, and η0 is the zero shear-rate viscosity of the dilute
solution, (ii) the elasticity number El = ηpλ/ρR2, where
ηs and ηp = η0−ηs are, respectively, the solvent and poly-
mer contribution to the total viscosity in the limit of zero
shear-rate and λ is the extensional relaxation time, and
(iii) the polymer chain extensibility Lmax = rmax/⟨r20⟩1/2,
where rmax ∼Mw is the length of a fully extended poly-
mer chain, ⟨r20⟩1/2 ∼ Mν

w is the equilibrium root-mean-
square end-to-end separation of the polymer in the coil
state and ν is the solvent quality parameter [31].

A summary of the distinct dynamical states observed in
our jet injection experiments is shown in Fig. 1a-e and
Movie S1. At low Reynolds number, the jet is lami-
nar and stable (Fig. 1a). As the Reynolds number in-
creases, a transition to turbulence can happen via two
distinctly different pathways, namely (i) through the
transient growth and decay of turbulent bursts for the
Newtonian jet and viscoelastic jets with low El and Lmax
(Fig. 1b) and (ii) through the development and growth of
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elasto-inertial filaments (EIF) for viscoelastic jets with
high El and Lmax (Fig. 1d). The EIF state appears
to be a fundamentally different pathway to turbulence,
which eliminates the axially-localized turbulent bursts,
or “puffs”, and replaces them with elongated filaments
of highly-stretched, polymer rich fluid around the core of
the jet. The dynamics of turbulent bursts and EIF states
are compared side-by-side in Movie S2.

We construct a state diagram summarizing these differ-
ent dynamical states of the jetting flow from the three
independent dimensionless numbers that characterize the
fluid rheology (El, Lmax) and the flow (Re), respectively,
and show a cross-sectional slice of this three-dimensional
state diagram in Fig. 1f for Lmax = 91.4 (see Fig. S2 of
the Supplemental Material for a three-dimensional rep-
resentation). Contours of constant Weissenberg number
are hyperbolae, where Wi = El ⋅ Re = 2(ηp/η0)(Uλ/R) =
2(1 − β)(Uλ/R) and β = ηs/η0. The NT and EIT states
are distinguished based on the value of the power-law
decay exponent in the spectral density of concentration
fluctuations, as discussed in Fig. 3.

Increasing fluid elasticity in the range of moderate
Weissenberg numbers, when elastic, viscous and inertial
effects are all important (0 < Wi ≲ 10, El < 0.05), has
a destabilizing effect resulting in a transition to turbu-
lence at markedly lower Reynolds numbers (Re = 400)
compared to the Newtonian jet (Re = 800) (Fig. 1f).
This destabilizing behavior has been observed in bounded
flows [1], and predicted by linear perturbation theory for
both free shear and bounded flows [3, 32]. Our state
diagram provides the first quantitative mapping of this
phenomenon in a spatially-developing flow such as a jet
undergoing nonlinear breakdown to turbulence.

However, further increases in elasticity, such that vis-
cous effects can be ignored compared to elastic and in-
ertial effects (Wi ≳ 10, El > 0.05), restabilizes the jet
and the turbulent bursts are replaced with highly elon-
gated filaments (denoted EIF). This stabilization of the
jet creates a re-entrant region on the state diagram that
is characterized by Weissenberg numbers of order unity
(Fig. 1f) and shifts the transition to turbulence to higher
Reynolds numbers. Recognizing that the importance of
viscous and elastic effects compared to inertial effects are
characterized by Re−1 and El respectively, it is clear that
in this region inertial and elastic effects dominate and
viscous effects can be ignored.

Our work identifies the EIF state as a distinct viscoelas-
tic transition and a new pathway to turbulence, in which
elastic tensile stresses first suppress the turbulent bursts
and then lead to a shear layer instability. The jet can be
viewed as an ‘elastic’ fluid column that slowly deceler-
ates through momentum diffusion as it enters the quies-
cent tank. The combination of elasticity and deceleration
of the fluid column result in a buckling–type instability
that breaks the axisymmetry of the high-speed jet. The
shear layer at the boundary of the jet grows with dis-

FIG. 2. (a) From left to right: snapshots of a Newtonian
(water) jet and PEO solution jets with Mw = 2 × 106 g/mol,
c = 100 ppm, Mw = 4 × 106 g/mol, c = 50 ppm, and Mw =
8×106 g/mol, c = 12.5 ppm, respectively. (b) Kymographs of
the concentration fluctuations at the Eulerian cross-section at
a distance 120R from the nozzle, shown with a white rectan-
gle. (c) Evolution of the scale of segregation S with polymer
extensibility L2

max. The error bars from repeated measure-
ments of S are smaller than the symbol size.

tance from the nozzle and leads to the development of
the EIF structures. In these highly elongated filaments
of fluid that surround the core of the jet, viscoelastic
tensile stresses increase substantially. Each filament ex-
periences a combination of unsteady shear and exten-
sion. When the resulting normal stress differences are
high compared to the shear stress in the jet, we may ex-
pect the strong stretching of the polymer chains along
the streamlines to eliminate turbulent bursts. Using
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FIG. 3. (a) Frequency spectra of the fluctuations in the local concentration in turbulent polymer jets at Re = 400 and for
a vertical distance 120R from the nozzle at the centerline of the jet. The abscissa and ordinate are non-dimensionalized with
the Zimm relaxation time, λZimm, and the square of the mean local concentration, ⟨c⟩2, respectively. The dashed line denotes
λZimmf = 1. The corresponding Newtonian jet is stable at this condition. (b) Temporal power spectral density for concentration
fluctuations at Re = 800 for the Newtonian jet and polymer solutions with different molecular weights and concentrations. The
abscissa is non-dimensionalized with the strain rate at the exit of the nozzle, U/R. The dashed line denotes the start of the
inertial range for Newtonian turbulence. The data acquisition point is shown with a hollow circle in the image shown on the
right. The insets in (b) compare the raw time signal of concentration fluctuations for the Newtonian jet and for a jet of PEO
solution (Mw = 8 × 106 g/mol, c = 12.5 ppm).

the finitely extensible nonlinear elastic (FENE) dumb-
bell model we know that ηe ≈ 2ηpL

2
max is the steady

extensional viscosity of the fully stretched chains [33].
Based on our experiments with a wide range of polymer
molecular weights (or Lmax) and polymer concentrations
(∼ (1−β)), we find an appropriate criterion for the elim-
ination of turbulent bursts and the development of EIF
to be ηe/η0 ∼ (1 − β)L2

max ∼ O(100).

The turbulent bursts and elasto-inertial filaments (EIF)
resulting from the shear layer instability observed in
Fig. 1 are both transitional pathways that ultimately lead
to elasto-inertial turbulence (EIT). In this turbulent state
the jets can exhibit significantly different spatial features
at a given El and Re as a result of the differing extensi-
bilities of the polymer chains leading to different levels of
tensile stresses in the fluid, as shown in Fig. 2. To quanti-
tatively compare the spatial features of EIT, we recognize
that mixing processes in these inertio-elastic turbulent
flows are the result of progressive stretching and fold-
ing into intermingled material elements and, ultimately,
molecular diffusion of the polymer into the surrounding
solvent [34]. For the short time-scales of interest here,
the effect of intermolecular diffusion is negligible because
the Péclet number Pe = RU/D ≫ 1; the diffusion coeffi-
cient of the polymer in its solvent is very small and scales
as D ∼ M−ν

w [31]. We can thus define a time-averaged
two–point correlation coefficient, ξ̄(y∗), calculated from

a series of Schlieren images of the spatial concentration
fluctuations, where y∗ = ∆y/R (see section 5 of the Sup-
plemental Material) for lateral displacements of size ∆y.
We use the scale of segregation S = ∫

∞
0 ξ̄ dy∗ to charac-

terize the mean size of the intermingled and deformed
material elements observed in the turbulent jet [34]. As
we show in Fig. 2c, for a series of jets at a fixed elasticity
number and Reynolds number, the scale of segregation
(suitably adjusted for a finite integration width and con-
stant background intensity; cf. section 5 of the Supple-
mental Material) increases monotonically with Mw, and
hence L2

max. An analysis of the FENE dumbbell model
at high Wi (see Supplemental Material) shows that this
scaling is consistent with the expectation that the ratio of
the first normal-stress difference to shear stress depends
on the maximum extensibility.

Finally, we quantify the temporal features of EIT.
Remarkably, fluid elasticity challenges even our most
strongly held notions of turbulence, specifically the −5/3
decay rate of its energy spectra [35]. We evaluate the
temporal power spectral density P (f), where f is the
frequency of the concentration fluctuations in jets in the
EIT state for a wide range of Re, El, and Lmax at the
centerline of the jet, as shown in Fig. 3. At Re = 400,
where a Newtonian jet is still laminar, all jets in the EIT
state, regardless of their transitional pathway or spatial
features, exhibit a spectral decay of P (f) ∼ f−3 at high
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frequencies. Given the large values of the Péclet number
in these high Mw polymer jets, the effects of diffusiv-
ity are negligibly small. Therefore, the power-law scal-
ing of concentration fluctuations is equivalent to prob-
ing the turbulent energy spectrum in the inertial range
[36] and it is clear that the classical cascade of turbu-
lent energy is dramatically altered by the polymer. With
frequency non-dimensionalized by the Zimm relaxation
time, λZimm, the f−3 decay starts at λZimmf ∼ 1, illus-
trating that the macromolecular solute starts to have an
impact on the turbulent flow at frequencies on the or-
der of the polymer relaxation rate, which depends on the
polymer molecular weight λZimm ∼ M3ν

w . In the dilute
limit, the Zimm relaxation time is independent of the
concentration [31] and all data series obtained from the
same molecular weight polymers superpose. However,
normalization with the Zimm relaxation time fails to su-
perpose the data series obtained from polymer solutions
with different molecular weights.

At a higher Reynolds number, Re = 800, both Newtonian
and viscoelastic jets are turbulent (Fig. 3b). The classical
scaling of Newtonian turbulence [36, 37] is verified after
the Newtonian jet transitions to turbulence at Re = 800,
with P (f) ∼ f−5/3 in the “inertio-convective” range [36].
The dashed line denotes the characteristic frequency at
the onset of the power-law decay, calculated based on the
Kolmogorov time-scale [38]. For the viscoelastic jets, the
onset frequency is lower and the f−3 slope is observed
for all investigated El and Lmax, suggesting a temporal
universality for the EIT state observed in dilute polymer
solutions under good solvent conditions [31]. Indeed, we
use the scaling P (f) ∼ f−3 as our criterion for identifying
the EIT jet states in the state diagram shown in Fig. 1
and in the Supplemental Material.

The abscissa of Fig. 3b is non-dimensionalized by the
characteristic strain rate in the jet at the nozzle, ε̇ ∼ U/R.
Using the strain rate for non-dimensionalization super-
poses all data series independent of Re, El, and Lmax
(see also Fig. S5 of the Supplemental Material, where we
show 14 data sets at different Reynolds numbers). The
data collapse highlights a universality that was hypothe-
sized by E. J. Hinch [39], and which we demonstrate is ro-
bust beyond the case of isotropic turbulence [14, 19, 40]:
the polymer chains sustain a persistent time–averaged
rate of strain ⟨ε̇⟩ through their continuous extension and
relaxation. Dimensional arguments require that this con-
stant strain rate (with dimensions of [time]

−1
) scales with

the spectral density of the turbulent energy per unit
mass at a particular wavenumber k (which has dimen-
sions of [length3/time2]) according to ⟨ε̇⟩ ∼ (E(k)k3)0.5,
and therefore in elastically dominated turbulence we can
anticipate that E(k) ∼ k−3 [19, 39]. In the convectively-
dominated flows studied here [36], where Taylor’s frozen
flow hypothesis holds due to the small concentration
fluctuations (see Supplemental Material, which includes
Refs. [41–44]), the power-law decay rate of the frequency

spectrum for concentration fluctuations is a surrogate for
the decay rate of the wavenumber spectrum for turbulent
energy. It provides comprehensive evidence for the uni-
versality observed for all concentrations and molecular
weights studied.

Our results chart the rich landscape of the turbulent fluid
dynamics of dilute polymer solutions. Despite the often-
cited calming effect of polymers on turbulence, when vis-
cous and elastic effects interplay (Wi ≲ 10) the effects of
increasing fluid elasticity (El) are initially destabilizing.
At higher Wi, and in the presence of fluid inertia, the
normal stress differences arising from nonlinear elasticity
recover their celebrated stabilizing influence [32, 45, 46].
Using Schlieren imaging, which enables quantitative visu-
alization of dilute polymer solutions, we have elucidated
two routes to EIT; one mediated by turbulent bursts and
the other through EIF. Which path is followed depends
on the elasticity of the fluid and the extensibility of the
dissolved macromolecule. The resulting EIT state that
develops in the submerged jet far from the nozzle is dif-
ferent from Newtonian turbulence: the coherence of the
large scales is more pronounced and turbulent dispersion
is appreciably hindered. The striking qualitative changes
in the Schlieren images are matched by a persistent and
unambiguous change in the spectral decay rate from the
“−5/3 power law” expected from Newtonian turbulence
to a −3 rate of decay for the elasto-inertial regime of jet
turbulence. Despite the inconsistencies noted in previ-
ously reported power-laws for EIT [15], the f−3 power-
law observed in our work is an invariant quantitative
measure that can be used as a first step to connect the
drag reduction empirically observed in viscoelastic turbu-
lent flows and the time-varying inertio-elastic structures
that characterize such processes.
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