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We show that the onset of steady-state superradiance in a bad cavity laser is preceded by a
dissipative phase transition between two distinct phases of steady-state subradiance. The transition
is marked by a non-analytic behavior of the cavity output power and the mean atomic inversion, as
well as a discontinuity in the variance of the collective atomic inversion. In particular, for repump
rates below a critical value, the cavity output power is strongly suppressed and does not increase
with the atom number, while it scales linearly with atom number above this value. Remarkably,
we find that the atoms are in a macroscopic entangled steady state near the critical region with a
vanishing fraction of unentangled atoms in the large atom number limit.

Introduction.— Progress in laser physics has revolu-
tionized our day-to-day lives and the scope of experi-
ments across the entire spectrum of scientific disciplines.
At its core, the laser is a highly out-of-equilibrium system
whose steady state is maintained via a balance of driving
and dissipation. A typical laser model involves a collec-
tion of continuously pumped two-level atoms interacting
with an electromagnetic field confined in a cavity with
lossy mirrors. In particular, bad cavity lasers operate in
a regime where the lifetime of the photon is short com-
pared to the effective lifetime of the upper atomic level
[1–3]. Over the past decade, they have garnered signifi-
cant attention because in these systems the sensitivity
of the laser linewidth to cavity frequency fluctuations
is strongly suppressed [1, 4]. Furthermore, this narrow
linewidth coexists in a regime where the emission ampli-
tudes of the atoms can constructively interfere and give
rise to superradiant emission. Apart from its promising
technological potential, the superradiant regime has also
been shown to host a variety of many-body phenomena
such as synchronization [5–15], collective cooling [16–21]
and self-organization [16, 22–26].

In contrast, the regime preceding the onset of super-
radiance has received far less attention, partly because
within the framework of mean-field theory the atoms
appear to be in a trivial unpolarized product state.
Prior beyond-mean-field studies have only considered this
regime in passing [2, 27] or for a small number of emit-
ters [28, 29], but have nevertheless demonstrated that
the atoms populate collective dark states giving rise to
steady-state subradiance. However, the physics in this
regime and the stability of the highly-correlated quan-
tum states remains poorly understood especially given
the fact that this regime is complementary to the well
studied and much anticipated steady-state superradiant
regime.

In this Letter, we show that the subradiant regime of
a bad cavity laser is in itself a playground for a rich vari-

FIG. 1. (a-b) Bad cavity laser model illustrated with N = 4
atoms. The atoms undergo collective decay (green) in the
presence of non-collective pumping (red) and additional non-
collective decay (blue). When w < γ + Γc, the phases of the
spins are anti-correlated, leading to steady-state subradiant
emission. The steady-state density matrix lives in a trian-
gular state space characterized by quantum numbers J,M .
Collective decay only leads to transitions in the same J man-
ifold, whereas non-collective pumping and decay cause jumps
to states in the same as well as adjacent J manifolds. (c-
d) Population distribution on the Dicke ladder for N = 100
atoms, for two states that are approximately equally subradi-
ant (c.f. Eq. (3)) but on either side of the phase transition.

ety of physical phenomena. In particular, we show that
the onset of superradiance is preceded by a dissipative
phase transition between two distinct types of subradi-
ance. The transition is shown to arise as a consequence of
the bounded state space of the collective atomic system.
The two subradiant steady states correspond to the pop-
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ulation of different regions of this state space (see Fig. 1).
The phase transition is heralded by a non-analytic change
in the cavity output power and a discontinuous change in
a squeezing parameter. An experimentally attractive fea-
ture is the scaling of the output power, which is strongly
suppressed and does not increase with atom number N
below the critical point but instead scales linearly with N
above this point. Near the critical point, we find that the
atoms are in a macroscopically entangled state and that
the fraction of unentangled atoms is vanishingly small as
the number of atoms increases. From the viewpoint of
dissipative spin models, this phase transition and the ac-
companying entanglement is striking because they arise
in a model whose governing master equation contains no
Hamiltonian terms but only Lindblad dissipators.

Model.— Our system consists of N atoms each with
upper and lower levels |↑〉 and |↓〉 respectively and a sin-
gle lossy cavity mode as shown in Fig. 1(a). The atoms
can be modeled using the language of Pauli matrices
where σ̂−j = |↓〉j 〈↑|j (σ̂+

j = |↑〉j 〈↓|j) is the lowering (rais-
ing) operator for atom j and σ̂zj = |↑〉j 〈↑|j − |↓〉j 〈↓|j is
the population difference between the spin states. The
finite lifetime of |↑〉 causes atoms to emit photons both
into free space modes and the cavity mode as they de-
cay to |↓〉. Emission into free space is characterized by a
jump operator

√
γσ̂−j for each atom. Assuming that the

atoms are identically coupled to the cavity mode, the
emission of a cavity photon is characterized by the jump
operator

√
ΓcĴ

− where Ĵ− =
∑N
j=1 σ̂

−
j is the collective

angular momentum lowering operator. Here, Γc = Cγ
is the single atom emission rate into the cavity, which is
modified by the dimensionless cooperativity parameter
C. The decay channels are balanced by an effective inco-
herent pumping of the individual atoms from |↓〉 → |↑〉
which is represented by a jump operator

√
wσ̂+

j for each
atom. The master equation governing the spin dynamics
is therefore given by

∂tρ̂ =

N∑
j=1

D̂
[√
wσ̂+

j

]
ρ̂+

N∑
j=1

D̂
[√
γσ̂−j

]
ρ̂+D̂

[√
ΓcĴ

−
]
ρ̂,

(1)
where D̂[Ô]ρ̂ = Ôρ̂Ô†−Ô†Ôρ̂/2−ρ̂Ô†Ô/2 is the Lindblad
dissipator associated with a jump operator Ô.

This master equation is invariant under permutations
of the atomic indices and this symmetry results in a dras-
tic reduction of the Liouville space for the steady-state
solution from 4N to O(N3) basis states [30, 31]. Further-
more, the master equation also possesses a U(1) sym-
metry which can be seen by making the transformation
σ̂±j → e±iφσ̂±j in Eq. (1). This additional symmetry re-

duces the required basis states to O(N2).

A convenient representation of these basis states uses
the permutation invariant eigenstates of the Ĵ2 and Ĵz

operators with respective quantum numbers J,M [32].
Here, we have introduced the collective angular momen-

tum components Ĵ i =
∑N
j=1 σ̂

i
j/2, i = x, y, z, wherein

σ̂xj = σ̂+
j + σ̂−j and σ̂yj = −i(σ̂+

j − σ̂
−
j ). The two quantum

numbers J = 0, 1, 2, . . . , N/2 (for an even N [33]) and
M = −J, . . . , J form a discrete, triangular state space for
the collective atomic state in Liouville space as shown in
Fig. 1(b). While the two vertices at J = N/2,M = ±N/2
correspond to trivial product states with all spins in |↑〉
or |↓〉, the third vertex at J = 0,M = 0 is a highly en-
tangled, subradiant state wherein the atoms are grouped
into N/2 singlet pairs [34].

In this state space, collective emission leads to a transi-
tion with ∆M = −1 within a ladder of constant J . While
the free space emission and repump of any single atom
breaks permutation invariance, the cumulative effect of
either of these processes occurring for all atoms preserves
this symmetry. Hence, they can be viewed as transi-
tions between different states in this state space with
∆M = −1,+1 respectively. Crucially, these processes
couple adjacent J ladders and take the system away from
J = N/2 which is the initial value when the atomic pseu-
dospins are initialized in a coherent spin state. Closed
form expressions for the transition probabilities [35] en-
able us to numerically determine the steady-state by ex-
act diagonalization (ED) of a rate matrix [32].

Signatures of the phase transition.— For repump rates
such that γ + Γc < w < NΓc, the system is in the super-
radiant regime that is characterized by positive inversion
and spin-spin correlations 〈σ̂z1〉, 〈σ̂+

1 σ̂
−
2 〉 > 0 [1]. We now

vary w in the weak repump regime 0 < w < γ+ Γc while
keeping the values of γ,Γc fixed. We choose γ/Γc = 0.1,
corresponding to C = 10. We first consider the cav-
ity output power per atom, which is proportional to
〈Ĵ+Ĵ−〉/N , where Ĵ+ = (Ĵ−)†. Figure 2(a) plots this
quantity for different atom numbers as w is scanned
across γ. With increasing system size, we observe sig-
natures of a non-analytic change at w = γ that indicates
a phase transition. We use second-order cumulant theory
to obtain analytical insight into this behavior. Using an
expansion in the small parameter 1/N , we find that the
O(N0) behavior of 〈Ĵ+Ĵ−〉 is given by [32]

〈Ĵ+Ĵ−〉 =

0 0 < w < γ

N
w − γ
2Γc

γ < w < γ + Γc.
(2)

For w < γ, a zero solution at leading order reveals the
strong suppression of the cavity output power, which
does not grow with N in this regime. On the other hand,
the output power grows linearly with N for w > γ.

Importantly, this critical point is distinct from and pre-
cedes the onset of superradiance at w = γ + Γc. As
a result, the collective atomic state is subradiant (with
respect to emission into the cavity) in both the phases
demarcated by this point. A quantitative measure of the
degree of subradiance is the per-atom reduction in the
collective emission rate in units of Γc. This subradiance
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FIG. 2. Signatures of the phase transition. (a) Cavity power output per atom, characterized by 〈Ĵ+Ĵ−〉/N , (b) Subradiance
factor Sf and (c) Mean atomic inversion, as w is scanned across γ (= 0.1Γc). Markers show the results from exact diagonalization
for various atom numbers. The solid line is the result for N = 105 atoms obtained using second-order cumulant theory. (d)
Normalized variance of the total inversion. The solid lines in (d) are computed using third-order cumulant theory for the
displayed atom numbers.

factor Sf is given by

Sf =
1

N

[
〈Ĵ+Ĵ−〉 −

(
N

2
+ 〈Ĵz〉

)]
= (N − 1)〈σ̂+

1 σ̂
−
2 〉,

(3)
where 〈Ĵ+Ĵ−〉 describes collective emission and includes
the effects of atom-atom correlations, while the second
term describes the emission from N uncorrelated atoms.
The J = 0,M = 0 singlet state gives the minimum pos-
sible value of Sf = −0.5 and hence it can be consid-
ered the most subradiant state. Remarkably, as shown in
Fig. 2(b), we find that near the critical point Sf → −0.5
with increasing system size, indicating that the system is
highly subradiant on either side of this point and occu-
pies states with J close to zero.

To understand how these two subradiant phases differ,
we plot the population in the J,M states for N = 100
atoms at two points with similar values of Sf (≈ −0.37)
on either side of the critical point (Fig. 1(c-d)). For w <
γ, the population is localized around a mean J ∼ O(N)
and therefore even single collective excitations rapidly de-
cay at a collectively enhanced decay rate ∼ JΓc, largely
confining the population to dark states with M = −J
[36]. In contrast, for w > γ, the collective decay is un-
able to confine the population to the lower boundary. In
this regime, the system occupies states with vanishing
values of J/N whereas all allowed M values are signifi-
cantly populated, hence allowing the atoms to emit light
through the cavity. To summarize, as w increases, the
subradiant system ‘walks’ up the lower boundary of the
triangular state space, encounters the vertex at J = 0
and undergoes a phase transition into a qualitatively dif-
ferent family of subradiant states. Therefore, the phase
transition arises as a result of the closed bottleneck at
J = 0 that reflects the incoming population back into
the J ≥ 0 space (see animation [37]).

A non-analytic change is also observed in the mean
atomic inversion 〈σ̂z1〉 = 2〈Ĵz〉/N , plotted in Fig. 2(c).
We find that 〈σ̂z1〉 monotonically increases with w for
w < γ while it is essentially zero (at leading order) for

w > γ [32]. A further, dramatic evidence for the phase
transition is observed in the normalized variance of the
collective inversion, given by (∆Ĵz)2/N . Figure 2(d)
plots this quantity for N = 103, 104, 105 spins. Since
J � N/2 in the critical region, we are able to extend
the exact diagonalization (ED) computation to N ∼ 105

by working in a truncated state space with Jmax ≤ 1250.
With increasing atom number, we find strong evidence
for a discontinuous jump in this quantity at the critical
point. In cumulant theory, we find that this jump in the
variance is only reproduced by accounting for third-order
cumulants [32]. In particular, we cannot factorize three-
atom correlations as 〈σ̂+

1 σ̂
−
2 σ̂

z
3〉 ≈ 〈σ̂+

1 σ̂
−
2 〉〈σ̂z1〉. The non-

analytic behavior of the inversion and the discontinuity
in the variance at the critical point are reminiscent of
the behavior of order parameters and susceptibilities in
equilibrium phase transitions, but in this system these
features manifest in a strongly out-of-equilibrium setting.

Entanglement.— The failure of simple mean-field the-
ory to reveal subradiance motivates us to investigate the
entanglement properties of the steady state in this regime
and in particular near the critical point w = γ. Since the
system occupies states with J � N/2 near this point, an
appropriate entanglement witness is the generalized spin
squeezing parameter [38, 39] given by

ξ2 =
(∆Ĵx)2 + (∆Ĵy)2 + (∆Ĵz)2

N/2
, (4)

where (∆Ĵ i)2 = 〈(Ĵ i)2〉−〈Ĵ i〉2 is the variance in the spin
component i = x, y, z. A value of ξ2 < 1 is sufficient to
establish entanglement. Physically, this parameter cap-
tures the simultaneous compression of uncertainties in
the three angular momentum components and takes the
minimum value of ξ2 = 0 for the macroscopic singlet
state with J = 0,M = 0. Furthermore, ξ2 also serves as
an upper bound for the fraction of unentangled spins in
the system [40].

Figure 3(a) plots ξ2 as w is varied across γ. The discon-
tinuity in (∆Ĵz)2 also manifests here as a sudden drop in
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FIG. 3. (a) Steady-state squeezing parameter ξ2 as w is
scanned across γ (= 0.1Γc). Markers depict ED results while
the lines are obtained from third-order cumulant theory. (b)
Minimum ξ2 value extracted from ED and third-order cumu-
lant theory. A fit to the ED data reveals a scaling of N−0.34.

ξ2 near the critical point that becomes more pronounced
with increasing system size. For a finite N , the minimum
attainable ξ2 decreases with N . As shown in Fig. 3(b),
we find a power law scaling ξ2 ∝ N−0.34 for the mini-
mum value obtained using ED, which is approximately
reproduced by the numerical solution of third-order cu-
mulant theory where ξ2 ∝ N−0.31. This scaling indicates
that the fraction of unentangled spins, for which ξ2 is an
upper bound, vanishes as N → ∞. Indeed, in the large
N limit, we analytically find that ξ2 → 0 (ξ2 → 1/2) as
w → γ+ (w → γ−) [32]. The subradiant-to-subradiant
phase transition is thus characterized by macroscopic en-
tanglement in the atomic ensemble where O(N) atoms
are entangled with other atoms.

Practical considerations.— Bad cavity lasers based on
Raman transitions [3] as well as narrow-line optical tran-
sitions [41] can be potentially adapted to observe this
transition. Experiments could also be based on coopera-
tive emission from artificial atoms such as NV centers or
quantum dots [42, 43]. Whereas for steady-state super-
radiance the bad cavity requirement is κ � NΓc, with
κ the cavity linewidth and NΓc the order of the collec-
tively enhanced single-atom emission rate, future stud-
ies can explore if this requirement can be relaxed in the
subradiant regime where there is no such enhancement.
However, similar to the superradiant regime, steady-state
subradiance requires the atom-cavity system to satisfy
NC � 1 but operate in the less explored weak pumping
limit given by w ∼ γ � NΓc. Although we have consid-
ered the stricter (but achievable [44]) condition C > 1 in
this work, the non-analytic behavior of the inversion and
output power is independent of C, and the critical scaling

of the minimum squeezing with N will also be observable
for C . 1, albeit with an exponent of smaller magnitude
[32]. However, for C � 1, the interval γ < w < γ + Γc is
very small and hence the subradiant-to-subradiant tran-
sition is immediately succeeded by the onset of superra-
diance. We have verified that the mean inversion, output
power and the minimum squeezing are robust to T2 de-
phasing even when 1/T2 & γ [32]. The steady state is also
robust to small fluctuations in the atom-cavity detuning
since the resulting spin exchange Hamiltonian (∝ Ĵ+Ĵ−)
is permutation and U(1) symmetric and hence commutes
with the steady-state density matrix. While 〈Ĵ+Ĵ−〉 can
be inferred from the cavity output power, the mean in-
version and the variance (∆Jz)2 could be measured, for
instance, by preparing the steady state and subsequently
measuring the population statistics in one of the pseu-
dospin states by detecting the fluorescence from a cy-
cling transition. Alternatively, quantum non-demolition
(QND) schemes could also be used to measure the latter
two observables [45, 46] . The quantities Sf and ξ2 can be
estimated by combining these three quantities. The cav-
ity output can also be used to measure photon bunching
via the second-order correlation function g(2)(0), which
we find exhibits an abrupt spike at the critical point [32].

So far, we have considered the case when atoms are
identically coupled to the cavity mode, which can be
achieved, e.g., by using a commensurate trapping wave-
length [45] or by spectroscopic selection of atoms with
near-maximal coupling [47]. We now briefly comment
on the case of inhomogeneous atom-cavity coupling. Re-
markably, we find that the cavity output power and the
mean inversion in both phases remain unchanged at lead-
ing order even when the atoms are assumed to be arbi-
trarily distributed over a cavity mode wavelength [32].
The two phases still remain subradiant, although the ex-
pression for Sf must now account for the inhomogeneity.
It may nevertheless be estimated using the output power
and the mean atomic inversion [32]. Verifying entan-
glement may be possible by using a modified squeezing
parameter that accounts for the spatial modulation en-
tering the accessible observables as a result of the inho-
mogeneous coupling. We construct a modified squeezing
parameter in the Supplemental Material [32], using which
one could explore the possibility to detect entanglement
in an inhomogeneously coupled system in future work.

Conclusion and outlook.— We have demonstrated that
a bad cavity laser undergoes a dissipative phase transi-
tion from one subradiant phase to another before the on-
set of superradiance. Rather than destroying atomic cor-
relations, single atom pumping and decay instead play a
central role in generating and maintaining the entangled
subradiant states we observe, which, in addition, are also
robust to T2 dephasing. Buoyed by recent experiments
[48], subradiance is an exciting frontier with a variety
of proposed applications such as ultrafast readouts [49],
engineering of optical metamaterials [50], photon stor-
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age [51, 52], quantum state transfer [53] and improved
quantum metrology [54], to name but a few. In light of its
robust nature, it will be interesting to explore potential
applications of steady-state subradiance in quantum in-
formation processing, especially considering the features
near the critical point such as a vanishing fraction of un-
entangled spins and an extreme sensitivity of observables
to system parameters. From a fundamental perspective,
it will be interesting to explore connections with quantum
simulations of magnetism [55], topological properties of
classical Markov chains [56, 57], and higher-spin models,
where a higher-dimensional state space potentially allows
for even richer physics.
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[26] Simon B. Jäger, Murray J. Holland, and Giovanna Mo-
rigi, “Superradiant optomechanical phases of cold atomic
gases in optical resonators,” Phys. Rev. A 101, 023616



6

(2020).
[27] D. Meiser and M. J. Holland, “Intensity fluctuations in

steady-state superradiance,” Phys. Rev. A 81, 063827
(2010).

[28] Vasily V. Temnov and Ulrike Woggon, “Photon statistics
in the cooperative spontaneous emission,” Opt. Express
17, 5774–5782 (2009).
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