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We present a consistent ab initio computation of the longitudinal response function RL in 40Ca
using the coupled-cluster and Lorentz integral transform methods starting from chiral nucleon-
nucleon and three-nucleon interactions. We validate our approach by comparing our results for
RL in 4He and the Coulomb sum rule in 40Ca against experimental data and other calculations.
For RL in 40Ca we obtain a very good agreement with experiment in the quasi-elastic peak up
to intermediate momentum transfers, and we find that final state interactions are essential for an
accurate description of the data. This work presents a milestone towards ab initio computations of
neutrino-nucleus cross sections relevant for experimental long-baseline neutrino programs.

Understanding a wide variety of nuclear phenomena in
terms of constituent nucleons is a major ongoing initia-
tive in nuclear theory [1]. Theoretical predictions that
start from the forces among nucleons and their interac-
tions with external probes as described by chiral effec-
tive field theory are arguably the doorway to connect ex-
perimental observations with the underlying fundamen-
tal theory of quantum chromo-dynamics [2–5]. This ap-
proach is key to interpret existing data, provide guidance
for future experiments, and support interdisciplinary ef-
forts at the interface with nuclear physics, such as neu-
trino physics [6].

Neutrino oscillation experiments aim at addressing
some of the biggest unanswered questions in physics by
measuring the charge conjugation-parity violating phase
in the lepton sector of the Standard Model of particle
physics. For the current neutrino oscillation experiments
the systematic errors are at the order of ∼ 10% and
largely influenced by considerable cross-section uncer-
tainties. Next generation experiments set their precision
goal much higher. The T2HK [7] and DUNE [8] exper-
iments aim at achieving much smaller statistical fluctu-
ations, comparable with present systematic errors. It is
therefore crucial to control the systematics, whose major
part comes from the limited precision of theoretical mod-
eling of neutrino-nucleus cross sections. Furthermore, the
exposure needed to achieve a desired sensitivity also de-
pends on the ability of reducing systematic errors. The
models which are presently in use, particularly the ones
implemented in the Monte Carlo event generators, should
be benchmarked with the predictions given by ab initio
models of nuclear dynamics for relevant nuclei such as
12C, 16O and 40Ar.

Due to recent developments of accurate quantum
many-body methods with controlled approximations,
ever-increasing computing power, and advancements in
the description of nuclear interactions and electroweak
currents, we are now entering an era where the ab ini-
tio description of lepton-nucleus scattering is becoming

possible. The Green’s Function Monte Carlo (GFMC)
method was used to calculate nuclear responses of 4He
and 12C [9, 10], and was recently able to make direct com-
parisons with the neutrino-nucleus experimental cross
sections [11, 12]. Using the same dynamical ingredi-
ents, other simplified methods are being developed to
reduce the computational load and address the quasi-
elastic peak [13]. In another set of studies, the lepton-
nucleus scattering cross sections of 4He, 16O and 40Ar
were obtained using spectral functions calculated in the
self-consistent Green’s function method with final-state
interactions included using mean-field potentials [14, 15].

In this Letter, we lay out the tools for an ab initio
method that accurately accounts for final state interac-
tions, consistently with the treatment of initial state in-
teractions, and demonstrate its advantages by compar-
ing to available longitudinal electron scattering data for
40Ca. We base our approach on the coupled–cluster (CC)
method [16–25], which stands out as one of the most
suitable and promising methods for calculations involv-
ing medium-mass and heavy nuclei due to the polynomial
scaling of its computational cost with the mass number
A. Initially applied to closed-shell nuclei (see Ref. [25] for
a review), it has since been extended to accurately de-
scribe doubly open-shell neighbors such as 40Ar [26, 27],
and more recently starting from an axially deformed ref-
erence state entire isotope chains [28, 29]. Combining
CC with the Lorentz integral transform method [30, 31],
the LIT-CC approach extends the reach of this theory
to processes involving excitation of bound nuclear states
to the continuum. Originally applied to calculate low-
energy nuclear dipole responses [32, 33], recently it was
extended to compute the Coulomb sum rule for 4He and
16O [34]. By devising a method to project out the spuri-
ous center-of-mass (CoM) excitations, Ref. [34] has also
tackled the major technical challenge of removing CoM
contaminations in calculations utilizing translationally
non-invariant nuclear electroweak operators. These de-
velopments open the door to go beyond the sum rule
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calculations and gain deeper insights into the dynamics
of the nucleus by computing the nuclear response func-
tions. With the goal of eventually applying the theory
to neutrino-nucleus scattering, where experimental data
are scarce or imprecise, we first benchmark our results
for inelastic electron-scattering by comparing them with
existing data for 40Ca.

The inclusive cross section of this process can be ex-
pressed in terms of two response functions: the longitu-
dinal, RL(ω, q), and the transverse, RT (ω, q), where ω is
the energy transferred from the electron to the nucleus.
These are induced by the charge and the current opera-
tor, respectively, and can be experimentally disentangled
using the so-called Rosenbluth separation. We study the
longitudinal response in this work and defer the trans-
verse response, which receives large two-nucleon electro-
magnetic current contributions [12], to a future work.
Formally, the longitudinal response function can be de-
fined as

RL(ω, q)=

∫∑
f

|〈Ψf |ρ(q)|Ψ0〉|2 δ
(
Ef +

q2

2M
− E0 − ω

)
,

(1)
where M is the mass of the target nucleus, and |Ψ0/f 〉
and E0/f respectively denote the initial/final-state nu-
clear wave functions and energies, which we compute us-
ing nucleon-nucleon and three-nucleon forces from chiral
effective field theory. In order to estimate the sensitivity
of our results on the employed Hamiltonian we use two
different chiral interactions, namely NNLOsat [35] and
∆NNLOGO(450) [36]. These interactions are both given
at next-to-next-to-leading order in the chiral expansion
and employ a regulator cutoff of 450 MeV/c, but they dif-
fer in that ∆NNLOGO(450) includes intermediate states
with explicit ∆-isobars in its construction while NNLOsat

does not. These interactions are well suited for our study
of 4He and 40Ca as they have been shown to provide an
accurate description of radii and binding energies of light
and medium-mass nuclei nuclei, and the saturation point
of symmetric nuclear matter [35, 36].

The charge density operator considered in this work is

ρ(q) =
e

2

A∑
i=1

(
GSE(Q2) + τ3i G

V
E(Q2)

)
exp (iq · ri) , (2)

where e is the proton charge, while ri and τ3i are the co-
ordinate and the third isospin component of nucleon i.
We use the parametrization of Ref. [37] for the nucleon

isoscalar/isovector electric form factors, G
S/V
E (Q2). The

Darwin-Foldy and the spin-orbit relativistic corrections,
as well as the two-nucleon current contributions, are not
included in Eq. (2) since we strive for consistency be-
tween the power-counting and truncation in the chiral
expansions of the current and the interactions. Specifi-
cally, corrections to Eq. (2) are at least four orders higher
in the chiral expansion when the inverse of the nucleon

mass is counted as two chiral orders [38], which is beyond
the order at which the interactions we use are truncated.

The sum over Ψf in Eq. (1) poses a serious computa-
tional challenge, since it involves an integration over the
continuum states, when ω is above the particle emission
threshold ωth. To overcome this issue, we use the LIT
method, where through the application of a Lorentzian-
kernel transform

LL(σ, q) =
σI
π

∫
dω

RL(ω, q)

(ω − σR)2 + σ2
I

= 〈Ψ̃ρ
σ,q|Ψ̃ρ

σ,q〉 (3)

with σI 6= 0, one reduces the problem to solving

(H − E0 − σ)|Ψ̃ρ
σ,q〉 = ρ(q)|Ψ0〉 , (4)

where H denotes the nuclear Hamiltonian. Effectively,
Ψ̃ρ
σ,q is the solution of a bound-state “Schrödinger-like”

equation with a source term, which can be solved also in
coupled-cluster theory.

The CC method allows for the inclusion of many-body
correlations as a controlled expansion by writing the nu-
clear wave function as |Ψ〉 = eT |Φ0〉. Here |Φ0〉 is a
suitably chosen reference state, and T = T1 + T2 + . . .
is a linear expansion in particle-hole excitations typically
truncated at some low excitation rank. In this work we
truncate T = T1 + T2 which is known as the coupled-
cluster singles and doubles (CCSD) method. Inserting
the CCSD wave function into the many-body Schrödinger
equation and projecting from the left with e−T , it is
seen that the reference state |Φ0〉 is the ground-state of
the similarity transformed normal-ordered Hamiltonian
HN = e−THNe

T . In the LIT-CC formulation one has
to employ the equation-of-motion coupled-cluster tech-
nique (EOM-CC) [39] with a source term (see r.h.s. of
Eq. (4)) and the similarity transformed normal-ordered
operator ΘN ≡ e−TΘNe

T [40]. Here, Θ are the rank-J
multipoles of the electromagnetic charge operator given
by Eq. (2). To obtain the LIT, we perform EOM-CC
calculations for each multipole [ρ(q)]J , and perform the
sum over all multipoles at the end (see also Ref. [41]).

The response function RL(ω, q) for a given value of q
is then obtained by inverting the integral transform from
Eq. (3). To perform the inversions, which require the so-
lution of an ill-posed problem, we perform the expansion
RL(ω) =

∑N
i ciω

n0e−
ω
βi and seek for stable solutions by

varying the non-linear parameter β (as well as n0) in a
certain range. The inversion procedure involves the de-
termination of the coefficients ci of the N basis functions
by a least-squares fit [31]. We impose R(ω) to be zero for
ω ≤ ωth, using the values we obtain for a given nuclear
Hamiltonian in the CCSD approximation. We estimate
the uncertainty associated with the inversion procedure
by inverting LITs with three different values of σI = 5, 10
and 20 MeV and by varying N from 6 to 9.

In all our results we employ a model space consisting of
15 major oscillator shells (emax = 2n+l = 14) with an ad-
ditional cut on the matrix elements of the three-nucleon
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force given by e3max = 2n1 + l1 +2n2 + l2 +2n3 + l3 ≤ 16.
We checked that we can reach a satisfactory convergence
of LL in terms of the single-particle model space size
emax. The latter can be tested, e.g., by studying the
residual dependence on the underlying harmonic oscilla-
tor frequency }Ω. In particular, for LITs with σ = 20
MeV we estimate the convergence in the quasi-elastic
peak to be at the 2% level for q ≤ 350 MeV/c and of
4% for q ≥ 400 MeV/c, by varying }Ω in the range 18 to
22 MeV.
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FIG. 1. Longitudinal response function for 4He at q = 300
MeV/c. HH results taken from Ref. [42], GFMC results from
Ref. [43], and experimental data from Ref. [44].

Benchmark on the 4He nucleus— We begin by pre-
senting our results for RL in the case of 4He at q = 300
MeV/c. In Fig. 1, we show calculations performed with
the NNLOsat interaction in the CCSD scheme for an un-
derlying harmonic oscillator frequency of }Ω = 16 MeV.
Here the small band reflects only the uncertainty asso-
ciated with the LIT inversion. For comparison, we also
show calculations performed with the hyperspherical har-
monics method (HH) [45] using the AV18+UIX potential
and Green Function Monte Carlo (GFMC) [43] calcu-
lations that used the AV18+IL7 potential. We obtain
very good agreement with the experimental data as well
as with other theoretical calculations. This comparison
corroborates our method and further validates the pro-
tocol we developed in Ref. [34] to remove center of mass
contamination.

Benchmark on the 40Ca nucleus — Following the same
steps as in Ref. [34], we calculate the Coulomb sum rule
for 40Ca using the NNLOsat interaction. The CoM con-
tamination, which is expected to scale with inverse pow-
ers of the nuclear mass, is indeed found to be negligi-
ble for 40Ca at q > 200 MeV/c, and is overall much
smaller than in the previously considered cases of 4He and
16O [34]. In Fig. 2 we compare it to the cluster variational
Monte Carlo (CVMC) results from Ref. [46] which used
the AV18+UIX potential and included Darwin-Foldy and
spin-orbit corrections. Results are compatible at low-q
due to the larger uncertainty in the CVMC curve, and
show the same increasing trend for q > 100 MeV/c with
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FIG. 2. 40Ca results for Coulomb sum rule for NNLOsat and
}ω = 22 MeV compared with CVMC results of Ref. [46] and
experimental data taken from Ref. [47].

small differences. We have verified that the difference
at q = 500 MeV/c is mainly due to relativistic effects
which we omitted in order to be consistent with the chi-
ral order we work at. Most importantly, both theoretical
predictions are in agreement with experimental data [47]
in the range between 300 and 375 MeV/c and are higher
than the data above q = 400 MeV/c, likely because ex-
perimental data are obtained by integrating RL up to a
finite ω, and not up to infinity as is done in the theoretical
calculations. We consider this a successful benchmark of
our method and point out that only a mild Hamiltonian
dependence is observed.

The 40Ca longitudinal response function — We now
turn to our ab initio calculation of RL in 40Ca where
the full final state interaction is considered. We choose
40Ca because we can compare our calculations with ex-
isting data, and it is also a stepping stone for coupled-
cluster computations of neutrino scattering on 40Ar. For
both NNLOsat and ∆NNLOGO(450) we perform compu-
tations of RL at the momentum transfers q = 200, 300,
350 and 400 MeV/c. In CCSD, the obtained ground-
state energies E0 (proton separation energies ωth) are
−300.1 (6.32) MeV and −322.12 (6.12) MeV for the
NNLOsat and the ∆NNLOGO(450) potential, respec-
tively.

First, we find two bound excited Jπ = 3−, 5− states
lying respectively at 4.5 (3.8) MeV and 4.7 (4.0) MeV
with the NNLOsat(∆NNLOGO(450)) interactions, which
are in reasonable agreement with experimental data at
3.7 MeV (Jπ = 3−) and at 4.5 MeV (Jπ = 5−). We plot
their strengths as a line in Fig. 3, and we observe that
it decreases with q. Second, for the continuum response
we show a band that reflects the uncertainty associated
with the LIT inversion and the model space, as we vary
the harmonic oscillator frequency }Ω from 18 to 20 and
22 MeV. As can be seen in Fig. 3, for each momentum
transfer we observe a mild dependence on the interaction,
the latter being stronger at q = 200 MeV/c. Comparing
to the available experimental data from Ref. [47], we find
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FIG. 3. Longitudinal response of 40Ca for q = 300, 350, 400 MeV/c for NNLOsat and ∆NNLOGO(450) potentials. For q = 200
MeV/c the strength of excited states was scaled by factor of 1/2 for better visibility. Experimental data taken from [47].

a generally very good agreement, which is best for q =
300 MeV/c. At q = 400 MeV/c, we see a quenching
of the quasi-elastic peak and an enhancement in the tail
with respect to experiment. We speculate that this could
potentially be explained by relativistic boost effects [43]
or by the fact that, especially at high q and high ω, we
are reaching the limits of applicability of chiral effective
field theory set by the regulator cutoff 450 MeV/c.

Finally, to quantify the effect of the final state inter-
action, we will contrast the LIT-CC results with those of
the simple plane wave impulse approximation (PWIA).
The point-proton longitudinal response function is ob-
tained in PWIA assuming one outgoing free proton with
mass m and a spectator (A-1)-system with mass Ms,

RPWIA
L (ω, q) =

∫
dpn(p) δ

(
ω − (p + q)2

2m
− p2

2Ms
− ωth

)
,

(5)
and then augmented with nucleon electric form factors.
Here n(p) represents the proton momentum distribu-
tion calculated from coupled-cluster theory using the
NNLOsat interaction, where CoM corrections are found
to be negligible [48]. Unlike the LIT-CC results, the
PWIA curves shown in Fig. 3 are in poor agreement with
the data: (i) they miss the quasi-elastic peak position by
up to 20 MeV, (ii) they overestimate considerably the
quasi–elastic peak size by up to 40% and (iii) and they
do not fully account for the asymmetric shape of the re-
sponse. The differences between the LIT-CC and the

PWIA results are very strong at lower ω, where we ob-
serve that even for the highest momentum transfers here
considered q = 400 MeV/c, we describe the experimental
data very well. This highlights the importance of consis-
tently including the final state interaction.

In order to provide a prediction for future measure-
ments as opposed to a sole postdiction of existing data,
we have calculated also the q = 200 MeV/c kinematics,
where no data exist yet. While this low-q range may be
less important for neutrino physics, this is where we have
the largest uncertainty band (range of low-q and low-ω).
New precise data could provide important tests of the
ab initio nuclear structure theory. An experimental pro-
gram in this direction is presently under development in
Mainz [49].

Conclusions— We performed an ab initio calculation
of the longitudinal response function of 40Ca and ob-
tained very good agreement with existing data. Our re-
sults are a proof of principle that the LIT-CC method
is suitable to deliver responses for lepton-nucleus scat-
tering at the momentum transfers relevant for neutrino
oscillation experiments. Consequently, we extended the
reach of consistent ab initio calculations of electromag-
netic responses at intermediate momentum transfers into
a region of medium-mass nuclei, which until now was lim-
ited to systems with A ≤ 12.

Our framework allows for quantification of uncertain-
ties stemming from truncations of model space, chiral
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effective-field-theory, and coupled-cluster expansions. In
this work, we estimated errors that arise from the in-
version procedure, and studied the dependencies on the
model space and the nuclear Hamiltonian. Our quanti-
fied uncertainties does not yet include effects of miss-
ing higher-order excitations in the coupled-cluster ex-
pansion or terms in the chiral effective field theory in-
teractions and currents. A thorough analysis of all the-
ory uncertainties entering lepton-nucleus cross sections is
part of our future plans. Finally, we also plan to extend
our coupled-cluster calculations to the relativistic regime
through the formalism of nucleon spectral functions.
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