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The sensitivity of current and planned gravitational wave interferometric detectors is limited, in13

the most critical frequency region around 100 Hz, by a combination of quantum noise and thermal14

noise. The latter is dominated by Brownian noise: thermal motion originating from the elastic energy15

dissipation in the dielectric coatings used in the interferometer mirrors. The energy dissipation is16

a material property characterized by the mechanical loss angle. We have identified mixtures of17

titanium dioxide (TiO2) and germanium dioxide (GeO2) that show internal dissipations at a level18

of 1 × 10−4, low enough to provide almost a factor of two improvement on the level of Brownian19

noise with respect to the state-of-the-art materials. We show that by using a mixture of 44% TiO220

and 56% GeO2 in the high refractive index layers of the interferometer mirrors, it would be possible21

to achieve a thermal noise level in line with the design requirements. These results are a crucial22

step forward to produce the mirrors needed to meet the thermal noise requirements for the planned23

upgrades of the Advanced LIGO and Virgo detectors.24

Gravitational wave (GW) detectors are highly sensitive25

instruments that measure the very small distance changes26

produced by signals of astrophysical origin [1, 2]. The27

current generation of GW detectors are km-scale laser28

interferometers [3–6] with several hundreds of kW of cir-29

culating power in the Fabry-Perot arm cavities. The test-30

mass mirrors are made of high-purity fused silica sub-31

strates, coated with high-reflectivity multilayer dielectric32

thin-film stacks [7], composed of multiple pairs of high33

and low refractive index metal oxide layers, making a34

Bragg reflector structure.35

The sensitivity of the current detectors [8, 9] is limited36

by a combination of laser quantum noise [10] and dis-37

placement noise generated by the Brownian motion of38

the coatings [11, 12]. Therefore, to increase the astro-39

physical reach of future detectors, it is crucial to reduce40

coating Brownian noise. This in turn requires reducing41

the elastic energy dissipation in the thin film materials42

composing the coatings [12, 13]. The power spectral den-43

sity of Brownian noise at a frequency f is a complex44

function of the properties of the materials used in the45

coatings [14, 15]. An approximate expression, assuming46

equal bulk and shear loss angles, is given by (see [15] and47

supplemental material [16]):48
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where kB is the Boltzmann’s constant, T is the ambient49

temperature, w is the radius of the laser beam probing50

the mirror motion, d is the total thickness of the coating,51

YS and νS are the Young’s modulus and Poisson ratio of52

the substrate. The angular bracket expression 〈x〉 indi-53

cates the effective medium average [15, 17] of the material54

property x through the stack, weighted by the physical55

thickness of the layers. The relevant properties of the56

coating materials are the Young’s moduli Y , the Poisson57

ratios ν and the loss angles φ = Im(Y )/Re(Y ).58

The coatings used in the current Advanced LIGO mirrors59

are composed of alternating layers of amorphous SiO260

of low refractive index nSiO2 = 1.45 at 1064 nm, and61

TiO2:Ta2O5 of high refractive index nTiO2:Ta2O5 = 2.1062

at 1064 nm [18, 19]. The TiO2:Ta2O5 layers have a loss63

angle much larger than the SiO2 layers (3 − 4 × 10−4
64

[20, 21] compared to ∼ 2× 10−5 [18]) and therefore they65

dominate in the contribution to the coating Brownian66

noise.67

The goal for the next upgrade to the LIGO detectors,68

called Advanced LIGO+ [22, 23] is a reduction of the69

coating noise by about a factor of two, with a target70

Brownian noise of S
1/2
B = 6.6 × 10−21m/

√
Hz at a fre-71

quency of 100 Hz. The SiO2 layers can already be pro-72

duced with low enough mechanical loss angle [18], so73

the main focus of the current research is on improving74

the high refractive index material. Several different ap-75

proaches have been investigated, including deposition at76

elevated substrate temperatures [24, 25] and with assist77

ion bombardment [26, 27], doping and nanolayering of78

Ta2O5 [28–31], and the use of nitrides [32, 33]. Here79

we report results on amorphous oxide coatings based on80

mixtures of GeO2 and TiO2.81
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FIG. 1. Measured loss angle of TiO2:GeO2, as deposited and
after 10-hours-long annealing in air, at increasing tempera-
tures. Different color lines correspond to the cation composi-
tion listed in the legend. Only one sample for each concentra-
tion is shown here for simplicity. Other samples showed equal
values within the error bars.

The initial motivation to investigate coatings based on82

GeO2 was the discovery of a correlation between the83

room-temperature mechanical loss angle and the fraction84

of edge-sharing versus corner-sharing polyhedra in the85

medium-range order, as reported in [34] for ZrO2:Ta2O5.86

SiO2 also has a prevalence of corner-sharing, and is87

the amorphous material that exhibits the lowest known88

room-temperature loss angle in the acoustic frequency89

range [18, 35, 36]. Additionally, the mechanical loss an-90

gle of GeO2 at low temperatures [37] (. 100 K) exhibits91

a peak similar to the one found in SiO2 [38, 39]. In recent92

experiments on GeO2 [40], we confirmed that the atomic93

packing can be altered to improve medium range order by94

annealing and high temperature deposition. Similar cor-95

relations were found for different oxides by other groups96

[41–45].97

From the optical perspective, however, GeO2 has a re-98

fractive index n = 1.60 at 1064 nm that makes it un-99

suitable for use in a high reflector design when combined100

with SiO2, as 138 layers would be needed to achieve the101

required high reflectivity for the test-mass mirrors. The102

increase in the total thickness of a GeO2/SiO2 reflec-103

tor would balance out the reduced mechanical loss, with104

no net improvement in the coating Brownian noise. To105

increase the refractive index at the laser wavelength of106

1064 nm, GeO2 was co-deposited with TiO2 with differ-107

ent cation concentrations.108

Thin films of TiO2:GeO2 with Ti cation concentration of109

0%, 27%, and 44%, were deposited by ion beam sput-110

tering using a biased target deposition system [46], that111

allowed convenient tuning of the mixture composition by112

adjusting the length of the pulses biasing the metallic Ti113

and Ge targets.114

The cation concentration, oxygen stoichiometry and115
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FIG. 2. Effect of the annealing duration on the measured loss
angle for the 44% TiO2:GeO2 film.

atomic areal density of the films were determined by116

Rutherford backscattering spectrometry (RBS) [47]. The117

thickness and refractive index were obtained from spec-118

troscopic ellipsometry. The mass density was computed119

from the RBS and ellipsometry measurements. The ab-120

sorption loss at the wavelength of 1064 nm was assessed121

from photo-thermal common-path interferometry [48].122

The thin films were annealed in air, as annealing has been123

shown to reduce absorption loss and room-temperature124

mechanical loss angle in amorphous oxides [49, 50]. Graz-125

ing incidence x-ray diffraction shows all mixture films126

are amorphous upon annealing at 600◦C for 10 and 108127

hours, and show signs of crystallization when annealed128

at higher temperatures. The pure GeO2 film remained129

amorphous up to 550◦C.130

For the Ti cation concentration of 44%, the refractive131

index at 1064 nm is nTiO2:GeO2
= 1.88. The absorption132

loss normalized to a quarter-wavelength (QWL) thick sin-133

gle layer (141 nm) is 2.3 ± 0.1 ppm after annealing at134

600◦C. The absorption loss of pure GeO2 after annealing135

at 500◦C is below 1 ppm at λ = 1064 nm, showing the po-136

tential for improved absorption in the mixture. The de-137

position parameters are being optimized to achieve even138

lower optical absorption in TiO2:GeO2, to meet the Ad-139

vanced LIGO+ requirements of less than 1 ppm [23] for140

a full mirror coating. More details on the structural and141

optical characterizations are available in the supplemen-142

tal material [16].143

The thin films were also deposited with the same pro-144

cedure on 75-mm-diameter, 1-mm-thick silica disks, to145

measure the material’s elastic properties. The disk acts146

as a resonator: about 20 modes between 1 kHz and147

30 kHz can be measured in a Gentle Nodal Suspension148

[51, 52] to obtain their precise frequency and decay time.149

After the thin film is deposited on the substrate, the res-150

onant frequencies are shifted by amounts depending on151

the film properties, allowing an estimation of the Young’s152
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modulus and Poisson ratio [18, 53]. The decay times153

of the modes of the coated substrates are significantly154

shorter than for the bare substrate, due to the elastic155

energy dissipation in the film. Using the measured elas-156

tic properties of the film material, one can compute the157

fraction of elastic energy in the film for each resonant158

mode and use it to extract the loss angle φ of the thin159

film material [54].160

For a homogeneous amorphous material, the relation161

between stress and strain in the elastic regime can be162

described in terms of two elastic moduli, for example163

bulk K and shear µ moduli [55]. Similarly, the internal164

energy dissipation in the material should be described165

in terms of two loss angles φK = Im(K)/Re(K) and166

φµ = Im(µ)/Re(µ). There is no physical reason to as-167

sume the two loss angles to be equal, and we shall show in168

the following that they are indeed significantly different169

for TiO2:GeO2. The layered structure of the stack im-170

plies that a description in terms of an equivalent isotropic171

material is not accurate, since the bulk and shear energy172

distribution in the layers is different in the case of the173

ring-down measurements and in the Brownian noise case.174

While the expression in equation 1 assumes equal loss an-175

gles, a more precise expression, including the distinction176

between bulk and shear properties for all layers, is de-177

scribed in the supplemental material [16], and is needed178

to correctly account for the multilayer structure and the179

different materials.180

However, in the initial exploration of the effect of compo-181

sition and annealing schedule, we relied on the commonly182

used description with frequency independent equal bulk183

and shear loss angles [18, 56, 57]. The more detailed184

analysis of the best candidate material, described later,185

supports the use of this simplification for survey pur-186

poses, since our measurements are more sensitive to the187

shear than the bulk loss angle, and the former is found to188

be almost frequency independent. With this approach,189

figure 1 shows the measured loss angle for pure GeO2190

and the two concentrations of TiO2 and GeO2 studied191

in detail here. The most promising results are from a192

mixture of 44% TiO2 and 56% GeO2. The mechanical193

loss of amorphous oxides typically decreases with increas-194

ing annealing temperature and time. We observed rapid195

crystallization at 700◦C, and therefore explored the ef-196

fect of annealing duration on the loss angle. We tested197

heat treatments of 1, 10, 20, 108 and 216 hours in to-198

tal, for temperatures of 500, 550 and 600◦C. Figure 2199

shows the effect of annealing time on the loss angle of200

the 44% TiO2:GeO2 mixture. It was found that extended201

annealing at lower temperatures produces little improve-202

ment. Instead, after annealing at 600◦C for 108 hours,203

the loss angle is reduced to (0.96± 0.18)× 10−4, and the204

film is still amorphous. Among those tested in our work,205

this TiO2:GeO2 mixture is the most promising high-index206

material for low Brownian noise Advanced LIGO+ mir-207

rors, though further characterization of mixtures with208

other Ti/Ge ratios in this range is planned to find the209

SiO2 property Value
Refr. index at 1064 nm 1.45± 0.01
Young’s modulus 73.2± 0.6 GPa
Poisson ratio 0.11± 0.07

Loss angle φK = φµ =
(
2.6+0.5

−0.6

)
× 10−5

TiO2:GeO2 property Value
Cation conc. Ti/(Ti+Ge) 44.6± 0.3 %
Refr. index at 1064 nm 1.88± 0.01
Optical abs. for a QWL 2.3 ± 0.1 ppm
Density 3690± 100 kg/m3

Young’s modulus 91.5 ± 1.8 GPa
Poisson ratio 0.25 ± 0.07

Bulk Loss angle
aK =

(
22.0+10.6

−12.5

)
× 10−5

mK = 1.04+0.40
−0.36

Shear Loss angle
aµ =

(
8.4+2.9

−4.0

)
× 10−5

mµ = −0.06+0.15
−0.30

TABLE I. Measured parameters for TiO2:GeO2 and SiO2, af-
ter annealing at 600◦C for 108 hours. The loss angle model for
TiO2:GeO2 is φ(f) = a · (f/10 kHz)m. Uncertainties describe
the 90% confidence intervals.

optimum.210

As a first step toward the production of a full high-211

reflectivity coating, and to better characterize this212

new material, we deposited single layers of SiO2 and213

TiO2:GeO2, as well as a stack of 5 QWL layers of214

TiO2:GeO2 alternated with 5 layers of SiO2, and 20 lay-215

ers of TiO2:GeO2 alternated with 20 layers of SiO2. The216

depositions were performed using a commercial Spector217

Ion Beam Sputtering system that can produce films with218

better optical quality [26] than the biased target system219

used for the initial parameter exploration. At the laser220

wavelength of 1064 nm, the transmission of the 40-layer221

structure was 190 ppm and the optical absorption was222

measured to be 3.1 ppm after annealing. We also mea-223

sured the Young’s modulus and loss angle of the stacks.224

However, since the multilayers structure is not isotropic,225

a description in terms of Y and ν is only approximate.226

Nevertheless, the two stacks were found to have the same227

Young’s modulus, 78.0±1.3 GPa, and the same loss angle,228

(5.5±0.7)×10−5 after annealing at 600◦C for 108 h. This229

is an indication that there is no evidence of any system-230

atic error in the measurements due to the thickness of the231

coatings. At an approximation level consistent with as-232

suming equal bulk and shear loss angles, one can compute233

the expected value for the stack by averaging the single234

material values as φ̄ = 〈Y φ〉 / 〈Y 〉 = (6.4 ± 1.7) × 10−5.235

Therefore there is no indication of excess loss due to in-236

terfaces [58].237

A correct description of the Brownian noise in a multi-238

layer stack must take into account the bulk and shear239

moduli and loss angles of the individual materials. The240

resonant modes of the coated disk store different fractions241
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FIG. 3. Estimated bulk and shear loss angles as a function
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where the loss angles were measured, while the dashed lines
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regions show the 90% confidence intervals of the estimates.

of bulk and shear energy in the film, and therefore it is242

possible to extract the bulk and shear loss angles from243

the measurements [53, 59]. We model a single isotropic244

layer with known thickness and density as measured by245

ellipsometry and RBS, and with Young’s modulus, Pois-246

son ratio and bulk and shear loss angles as free param-247

eters. For each sample, the measurement data set con-248

sists of the frequency shifts due to the coating, and the249

reduction in the decay time, due to the energy dissipa-250

tion in the coating, for each of the measurable modes.251

We used a Markov chain Monte Carlo Bayesian Analy-252

sis [53, 60, 61] to find the probability distribution of the253

model parameters given the data. We considered either254

different bulk and shear loss angles or equal loss angles,255

and three possible frequency dependencies: constant, lin-256

ear or power law, for a total of six different loss models.257

The Bayesian analysis allows us to compute the relative258

likelihood of each model given the data. The best model259

for the TiO2:GeO2 film is a power law with different bulk260

and shear loss angles, while for the SiO2 film it is a con-261

stant single loss angle, as shown in figure 3. It is worth262

noting that the bulk loss angle for the TiO2:GeO2 film263

shows a rather steep frequency dependence. The second264

most likely model for this material is the one with a lin-265

ear frequency dependence. The bulk loss angle does not266

show a frequency dependency as steep as in the power law267

case, but it is still predicted to be significantly smaller268

than the shear loss angle at low frequency. The measured269

value of the loss angle for SiO2 is compatible with values270

reported in the literature [18]. Table I summarizes all271

the measured material properties. More details on the272

analysis and the results are in the supplemental material273

[16].274

The transmission requirements for the Advanced LIGO+275

test masses are similar to those for Advanced LIGO: the276
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input mirror test masses (ITM) should have a transmis-277

sion of 1.4% and the end test masses (ETM) of 5 ppm [3].278

Given the measured refractive indexes, the ITM stack is279

composed of 11 layers of 106 nm of TiO2:GeO2 alternated280

with 11 layers of 228 nm of SiO2, while the ETM stack281

is composed of 26 layers of 123 nm of TiO2:GeO2 and282

26 layers of 207 nm of SiO2. Both structures are capped283

with a half-wavelength-thick SiO2 layer.284

The Brownian noise for such mirrors can be computed285

using the effective medium approach described in the286

supplemental material [16], which has been checked to287

provide results within a few percent of other published288

formulas [14, 62]. The results are shown in figure 4. The289

noise is compliant with the design requirement for Ad-290

vanced LIGO+, reaching
(
5.8+1.0

−0.7

)
×10−21 m/

√
Hz at 100291

Hz. It is worth noting that this result does not depend292

strongly on the steep frequency dependency predicted for293

the bulk loss angle of TiO2:GeO2. If we use the second294

most probable model, with a less steep frequency depen-295

dency, we obtain
(
6.2+1.5

−0.8

)
× 10−21 m/

√
Hz at 100 Hz,296

still compatible with the Advanced LIGO+ design re-297

quirement. Preparation of samples on disks with lower298

resonant frequencies to better constrain these estimates299

is underway.300

In summary, we demonstrated that a mixture of 44%301

TiO2 and 56% GeO2 offers excellent optical quality and302

low mechanical loss angle, making it a promising material303

to be used as high-index layer in the test mass coatings304

of the Advanced LIGO+ interferometric GW detectors.305

We analyzed the internal energy dissipation of this novel306

material in terms of bulk and shear loss angles, and used307

the results to design multilayer high reflectivity stacks308
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for the Advanced LIGO+ mirrors. The Brownian noise309

achievable with TiO2:GeO2 / SiO2 based mirrors reaches310

a level compliant with the Advanced LIGO+ design re-311

quirements.312

Studies are on-going to further improve mechanical and313

optical absorption losses by changing deposition parame-314

ters, mixture and annealing schedule, and to characterize315

the scattering properties of the multilayer stacks. We are316

also planning to directly measure the Brownian noise of317

optimized high reflection mirrors designed for Advanced318

LIGO+ [20], to confirm the noise prediction.319
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Gianpietro Cagnoli. Correlated evolution of structure524

and mechanical loss of a sputtered silica film. Phys. Rev.525

Materials, 2:053607, May 2018.526

[44] Alex Amato, Silvana Terreni, Massimo Granata,527

Christophe Michel, Benoit Sassolas, Laurent Pinard,528

Maurizio Canepa, and Gianpietro Cagnoli. Observation529

of a Correlation Between Internal friction and Urbach530

Energy in Amorphous Oxides Thin Films. Scientific Re-531

ports, 10(1):1670, Feb 2020.532

[45] Alex Amato, Silvana Terreni, Massimo Granata,533

Christophe Michel, Laurent Pinard, Gianluca Gemme,534

Maurizio Canepa, and Gianpietro Cagnoli. Effect of heat-535

ing treatment and mixture on optical properties of coat-536

ing materials used in gravitational-wave detectors. Jour-537

nal of Vacuum Science & Technology B, 37(6):062913,538

2019.539

[46] Zhurin V V et al. Biased target deposition. Journal of540

Vacuum Science & Technology A: Vacuum, Surfaces, and541

Films, 18(1):37, 2000.542

[47] Wei-Kan Chu. Backscattering Spectrometry, 1st Edition.543

Academic Press, 1978.544

[48] Alexei Alexandrovski, Martin Fejer, A Markosian, and545

Roger Route. Photothermal common-path interferom-546

etry (PCI): new developments. In Solid State Lasers547

XVIII: Technology and Devices, volume 7193, page548

71930D. International Society for Optics and Photonics,549

2009.550

[49] Roger P. Netterfield, Mark Gross, Fred N. Baynes,551

Katie L. Green, Gregory M. Harry, Helena Armandula,552

Sheila Rowan, Jim Hough, David R. M. Crooks, Mar-553

tin M. Fejer, Roger Route, and Steven D. Penn. Low554

mechanical loss coatings for LIGO optics: progress re-555



7

port. In Michael L. Fulton and Jennifer D. T. Kruschwitz,556

editors, Advances in Thin-Film Coatings for Optical Ap-557

plications II, volume 5870, pages 144 – 152. International558

Society for Optics and Photonics, SPIE, 2005.559

[50] Matthew Robert Abernathy, Xiao Liu, and Thomas H560

Metcalf. An overview of research into low internal fric-561

tion optical coatings by the gravitational wave detection562

community. Materials Research, 21, 2018.563

[51] E. Cesarini, M. Lorenzini, E. Campagna, F. Martelli,564

F. Piergiovanni, F. Vetrano, G. Losurdo, and G. Cagnoli.565

A gentle nodal suspension for measurements of the acous-566

tic attenuation in materials. Review of Scientific Instru-567

ments, 80(5):053904, 2009.568

[52] G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson,569

A. Heptonstall, E. Sanchez, and C. Torrie. A high570

throughput instrument to measure mechanical losses in571

thin film coatings. Review of Scientific Instruments,572

88(7):073901, 2017.573

[53] Gabriele Vajente, Mariana Fazio, Le Yang, Anchal574

Gupta, Alena Ananyeva, Garilynn Billinsley, and Car-575

men S. Menoni. Method for the experimental measure-576

ment of bulk and shear loss angles in amorphous thin577

films. Phys. Rev. D, 101:042004, Feb 2020.578

[54] Tianjun Li, Felipe A. Aguilar Sandoval, Mickael Geitner,579

Ludovic Bellon, Gianpietro Cagnoli, Jérôme Degallaix,580
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