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In passive fluid-fluid phase separation, a single interfacial tension sets both the capillary fluctua-
tions of the interface and the rate of Ostwald ripening. We show that these phenomena are governed
by two different tensions in active systems, and compute the capillary tension σcw which sets the
relaxation rate of interfacial fluctuations in accordance with capillary wave theory. We discover that
strong enough activity can cause negative σcw. In this regime, depending on the global composition,
the system self-organizes, either into a microphase-separated state in which coalescence is highly
inhibited, or into an ‘active foam’ state. Our results are obtained for Active Model B+, a minimal
continuum model which, although generic, admits significant analytical progress.

Active particles extract energy from the environment
and dissipate it to self-propel [1, 2]. Among their notable
self-organizing features is phase separation into dense
(liquid) and dilute (vapor) regions, even for purely re-
pulsive particles [3–5]. Although generically a far-from-
equilibrium effect, active phase separation was first de-
scribed via an approximate mapping onto equilibrium
liquid-vapor phase separation [3, 4], leading to early spec-
ulation that time reversal symmetry might be restored
macroscopically in steady state [3, 6–11]. Indeed, ac-
tivity is an irrelevant perturbation near the liquid-vapor
critical point, albeit without causing emergent reversibil-
ity [12].

Recently it has become clear, however, that bulk
phase separation in active systems displays strongly non-
equilibrium features. Bubbly phase separation [13] was
evidenced in simulations of repulsive self-propelled par-
ticles [14, 15]: here large liquid droplets contain a popu-
lation of mesoscopic vapor bubbles that are continuously
created in the bulk, coarsen, and are ejected into the ex-
terior vapor, creating a circulating phase-space current
in the steady state. Microphase separation of vapor bub-
bles [15, 16] has been further observed numerically, along-
side a similar phase of finite dense clusters, often found
in experiments with self-propelled colloids [17, 18] and
bacteria [19]. Recently, even more intriguing forms of
phase separation have been reported in an active system
of nematodes, comprising a phase where dense filaments
continuously break up and reconnect [20].

Much understanding of active phase separation has
been gained from continuum field theories. In the sim-
plest setting [13, 21, 22], these only retain the evolution
of the density field φ, while hydrodynamic [23, 24] or
polar [25] fields can be added if the phenomenology re-
quires. Their construction, via conservation laws and
symmetry arguments, follows a path first introduced with
Model B for passive phase separation [26–28]. Yet, these
field theories differ from Model B because locally bro-
ken time-reversal symmetry implies that new non-linear

terms are allowed. The ensuing minimal theory, Active
Model B+ (AMB+) [11, 13], including all terms that
break detailed balance up to order O(∇4φ2) in a gradi-
ent expansion [11, 13], is defined by

∂tφ = −∇ ·
(
J +
√
2DMΛ

)
(1)

J/M = −∇µλ + ζ(∇2φ)∇φ (2)

µλ[φ] =
δF
δφ

+ λ|∇φ|2 (3)

where F =
∫
dr
[
f(φ) + K(φ)

2 |∇φ|
2
]
, f(φ) is a double-

well local free energy, and Λ is a vector of zero-mean,
unit-variance, Gaussian white noises. Model B is recov-
ered at vanishing activity (λ = ζ = 0), unit mobility
(M = 1) and constant noise level D [26].

It is known that at low activity (small λ, ζ), AMB+ un-
dergoes conventional bulk phase separation. At higher
activity, Ostwald ripening [29], the classical diffusive
pathway to macroscopic phase separation, can go into
reverse [13]. This explains the emergence of bubbly
phase separation and microphase-separated vapor bub-
bles. (These phases arise when ζ, λ > 0; for ζ, λ < 0 the
identities of liquid and vapor phases are interchanged.)
More specific mechanisms, due to hydrodynamics [24, 30]
or chemotaxis [31, 32], can also piecewise explain some
of these phases. AMB+ does not refute such specific
explanations but offers a minimal framework to address
generic features of active phase equilibria. Its simplicity
admits both significant analytical progress, and efficient
numerics.

For active systems showing bulk liquid-vapor phase
separation it has been debated, on the basis of numeri-
cal and analytical studies, how to define the liquid-vapor
interfacial tension [33–39]. One key result of this Letter
is to confirm that no unique definition is possible. In-
spired by work on equilibrium interfaces [28], we derive
an effective equation for the interface height, and calcu-
late the capillary tension σcw which sets the spectrum of
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capillary waves and the relaxation times of height fluctu-
ations. We find σcw differs from σ, the tension introduced
in [13] to describe the Ostwald process. Whereas σ < 0
in the reverse Ostwald regime, this does not ensure cap-
illary instability, which instead requires σcw < 0. When
the latter holds, depending on the global density, we find
two new types of active phase separation (Fig. 4), driven
by an interfacial instability of Mullins-Sekerka type [40]:
a microphase-separated droplet state, where coalescence
among droplets is highly inhibited, and an ‘active foam’
state.

As is standard [13, 26] we now set M = 1, assume
constant D,K, and select f(φ) = a(−φ2/2 + φ4/4) with
a > 0. (Our results can be extended to any double-well
f and any K(φ) > 0.) We set ζ > 0, meaning that
reversed Ostwald ripening happens only for vapor bub-
bles. The corresponding results for ζ < 0 follow from
the invariance of our model under (φ, λ, ζ)→ −(φ, λ, ζ).
We denote by φ1 and φ2 the coexisting vapor and liq-
uid densities in the mean-field limit, D = 0; note that
φ1,2 = ±1 in the passive case only. More generally
they are found by changing variables from φ and f to
ψ and g: these ‘pseudo-variables’, introduced in [41]
for ζ = 0 and then generalised to AMB+ [13], solve
K∂2ψ/∂φ2 = (ζ − 2λ)∂ψ/∂φ and ∂g/∂ψ = ∂f/∂φ ≡ µ,
whence ψ = K (exp[(ζ − 2λ)φ/K]− 1) /(ζ − 2λ). In
terms of them, the equilibrium conditions µ1 = µ2 and
(µψ− g)1 = (µψ− g)2 which select the binodals φ1,2 still
hold [13, 41]. (This change of variables is primarily a
mathematical device for constructing the phase equilib-
ria; ψ and g have no direct physical significance beyond
this.) All our analytic results are valid in dimensions
d ≥ 2, while our numerics were done in d = 2 with peri-
odic boundary conditions and system size Lx×Ly, using
a pseudo-spectral algorithm with Euler updating [42].
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Figure 1. Mean-field phase diagram for ζ > 0, showing sign
regimes of interfacial tensions σ and σcw. When σcw > 0, the
interface is stable and unstable otherwise. Orange circles and
blue squares respectively denote the results of direct simula-
tions of AMB+ where the instability of the interface is or is
not observed. Right: interfacial instability (ζ = 1.5, λ = 2).

We start, following [29], by deriving the effective dy-
namics for small fluctuations of the interface height

ĥ(x, t) above a (d − 1) plane, with in-plane and verti-
cal coordinates (x, y) = r. We assume the absence of
overhangs. On a rapid time-scale, we expect diffusion to
quasi-statically relax φ(r, t) to a value that depend only
on the distance to the interface. For small amplitude,
long-wavelength perturbations, the vertical direction and
the one normal to the interface are equivalent and we thus
can assume that:

φ(r, t) = ϕ(y − ĥ(x, t)) (4)

where ϕ is the interfacial profile. By mass conservation,
the spatial average of ĥ is constant; we set ĥ = 0. It
will turn out that ĥ solves a non-local equation in space,
so we work in terms of its Fourier transform h(qx, t).
We proceed by plugging (4) into (1) and inverting the
Laplace operator. We multiply ∇−2∂tϕ by ∂yψ, inte-
grate across the interface, Fourier transform along the x-
direction, and expand in powers of h. Denoting q = |qx|,
we obtain [42]

∂th = − 1

τ(q)
h+ χ+O(q2h2) (5)

1

τ(q)
=

2σcw(q)q
3

A(q)
(6)

where

σcw(q) = σλ +
3ζ

4

∫
dy1dy2

(y1 − y2)

|y1 − y2|
ψ′(y1)ϕ

′2(y2)

eq|y1−y2|
(7)

σλ = K

∫
dy ϕ′(y)ψ′(y) (8)

and χ is a zero-mean Gaussian noise with correlations
〈χ(q1, t1)χ(q2, t2)〉 = Cχ(q1)δ(q1 + q2)δ(t1 − t2), with

Cχ(q) = 4(2π)d−1DB(q)

A2(q)
q . (9)

In (6,9), A(q) ≡
∫
dy1dy2 ψ

′(y1)ϕ
′(y2) exp(−q|y1 − y2|)

and B(q) ≡
∫
dy1dy2 ψ

′(y1)ψ
′(y2) exp(−q|y1−y2|) . Note

that (5) omits nonlinear terms, derived in [42], that pre-
viously arose in models of conserved surface roughen-
ing [43, 44].

The effective height equations (5-9) are the fundamen-
tal analytic results of this Letter. For wavelengths much
larger than an interfacial width ξ ∼ ξeq = (K/2a)1/2,
we can replace σcw(q), A(q) and B(q) with their limiting
values as q → 0. These, with a slight abuse of notation,
are denoted as σcw, A and B. Explicitly, the resulting
capillary-wave tension σcw obeys

σcw = σλ −
3ζ

2

∫
dy

[
ψ(y)− ψ1 + ψ2

2

]
ϕ′2(y) (10)

where ψ1,2 = ψ(φ1,2) are the pseudo-densities at the bin-
odals. As expected, in the equilibrium limit, σcw reduces
to the standard interfacial tension σeq = K

∫
dy ϕ′2(y)

λ, ζ → 0 [45] which governs not only the capillary fluctu-
ation spectrum, but the Laplace pressure and the rate of
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Ostwald ripening [28, 29]. Switching on activity breaks
this degeneracy. Indeed the tension determining the rate
of Ostwald ripening of a bubble was given in [13] as
σ = σλ−ζ

∫
dy [ψ − ψ(0)]ϕ′2(y), where ψ(0) is the value

of the pseudo-density at the droplet center. Therefore σ
is in general not equal to σcw.

Figure 2. (Left) liquid-vapor interface for σcw > 0 (Lx =
Ly = 256), D = 0, ζ = 2λ and its relaxation compared to the
theoretical predictions for initial perturbations at wavenum-
ber 2πn/Lx. Dashed lines are predictions obtained using τ(q),
converging to the q → 0 prediction (continuous line). (Right)
snapshot in steady state forD = 5×10−3 and scaled structure
factor q2S(q)/D vs q compared to the q → 0 analytical pre-
diction; results are averaged over 30 realisations of duration
106 after equilibration.

To gain explicit predictions from (5-9), we must eval-
uate σcw, A and B. This requires knowledge of the
interfacial shape ϕ(y). At equilibrium, this is well-
known [45]: ϕeq(y) = ± tanh(y/ξeq) with ξeq =

√
2K/a

and σeq =
√

8Ka/9. (Note that A = B = 4 in this
case.) Also, whenever 2λ = ζ it is readily shown that
ϕ = ϕeq so that σcw = σeq, although the Ostwald ten-
sions are σ = σeq(1 ∓ ζ/K) for bubble growth (−) and
liquid droplet growth (+) respectively [13]. We do not
have closed-form results for σcw at general λ, ζ; however,
a change of variable to w(ϕ) = ϕ′2 in the integrals defin-
ing σcw, A,B allows use of a simple numerical procedure
introduced in [21] and detailed in [42] to find the low q
behavior. To examine q 6= 0 below we instead extract the
interface profile from simulations at D = 0.

Fig. 1 shows a phase diagram of AMB+ for ζ > 0 at
mean-field level, delineating zones of negative σ and σcw.
(There are none at ζ > 0 and λ < 0). This provides the
full phase diagram of AMB+: the case of ζ < 0 follows
from Fig. 1 using the symmetry (λ, ζ, φ) → −(λ, ζ, φ) of
AMB+, which interchanges the liquid and vapor identi-
ties. For small activity, or for λζ < 0, σcw > 0, even
where σ < 0; here vapor bubbles undergoing reversed
Ostwald ripening have stable interfaces and, depending
on the global density, the system is either micro-phase
separated or in bubbly phase separation [13]. At high
activity a new regime emerges where σcw < 0 implying
that such interfaces (and also flat ones) become locally

unstable.
We first consider the regime σcw > 0, where our the-

ory predicts this capillary tension to govern, via (6),
the relaxation times of the interface τ(q). To check
this, we performed simulations of AMB+ for D = 0
starting from a phase separated state with the inter-
face perturbed via a single mode; Fig. 2 confirms that
h(q, t) = h(q, 0) exp(−t/τ(q)) as predicted by (5-9), for
either sign of the Ostwald tension σ. Our theory also
predicts the stationary structure factor of the interface
S(q) = limt→∞〈|h(q, t)|2〉:

S(q) =
(2π)d−1D

σcw(q)q2

B(q)

A(q)
→qξ−1�1

(2π)d−1Deff

σcwq2
(11)

whereDeff = D(ψ2−ψ1)/(φ2−φ1) is an effective capillary
temperature. Eq. (11) generalizes capillary wave theory.
Its equilibrium analog, S(q) ∝ D/σeqq

2 [46], is often jus-
tified using equipartition arguments but, even in equilib-
rium, higher order gradient terms give sub-leading correc-
tions at finite q [47, 48]. Activity impacts the interfacial
fluctuations by renormalizing the temperature D → Deff

and, separately, replacing σeq with σcw. Even though
(11) also neglects the additional nonlinearities omitted
from (5), it is quite accurate at small D (Fig. 2). The use
of capillary wave theory in phase-separated active sys-
tems was previously advocated heuristically [34, 36, 37]
but until now, only qualitative estimates were provided
for the coefficient Deff/σcw in (11).
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Figure 3. Instability at σcw < 0. The densities on the two
sides of the interface adjust quasi-statically at values that
depend on its local curvature. The ensuing diffusive density
fluxes on the vapor side is always stabilising (white arrow);
that in the liquid is stabilising when σ > 0 (arrow 1) and
becomes destabilising when σ < 0 (arrow 2). This (one-sided)
reverse-Ostwald current does not trigger an instablity unless
the current in the liquid outweighs that in the vapor, which
requires σcw < 0.

When σcw < 0, a drastically new non-equilibrium
phenomenology arises. Although the vapor–liquid in-
terface is unstable to height fluctuations, the system re-
mains phase separated. For, unlike in equilibrium where
demixing itself cannot be sustained at negative tension,
the active interface does not undergo diffusive collapse
but remains linearly stable against normal perturbations
φ(x, y) = ϕ(y) + ∂yε(y) [42, 49, 50].

Next, we numerically simulated AMB+ at D = 0, with
a noisy initial condition. Orange and blue dots in Fig. 1
respectively represent cases where the interfacial fluctua-
tion is damped or amplified (Movie 1), showing the accu-
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Figure 4. (Left) phase diagram when σcw < 0 as a function of the global density φ0 = −1,−0.4, 0.4, 1.2 at D = 0.05, Lx =
256, Ly = 512 and λ = 1.75, ζ = 2, for which φ1 = −0.9, φ2 = 1.08. At high and low φ0, the system is homogeneous (liquid
or vapor states). Within the binodals, when φ0 > (φ1 + φ1)/2, the system shows microphase-separated vapor bubbles whose
coalescence is highly inhibited. At lower φ0, the system forms a continuously evolving active foam state. (Middle and Right):
area distribution of vapor regions for the active foam state (φ0 = −0.4) and in the microphase-separated state (φ0 = 0.2, noise
values in the legend).

racy of our analytical predictions. Computing τ(q) shows
that the first unstable mode is at the lowest q available;
thus the transition line σcw = 0 is critical.

The interfacial instability mechanism (Fig. 3) is rem-
iniscent of the Mullins-Sekerka instability in solidifica-
tion [40]. In both cases the instability is driven by a single
diffusing field: latent heat in crystal growth, and density
here. Such a diffusing field settles to quasi-stationary val-
ues φB,D± on the two sides of the interface which depend
on the local curvature. By approximating φB,D± as the
densities near the interface of a vapor bubble (B) or liq-
uid droplet (D), we find that the diffusive current on the
vapor side is always stabilizing. In contrast, depending
on whether Ostwald ripening is normal or reversed, the
current on the liquid side is stabilizing or destabilizing.
Reversed Ostwald ripening is however not sufficient to
drive overall instability of the interface; this arises only
if the current on the liquid side is stronger than the one
on the vapor. This condition sets the threshold beyond
which σcw < 0. Measuring the steady state currents con-
firms this mechanistic picture [42].

We now report simulations with a small but finite noise
level to ensure reproducible steady states. Starting from
a near-uniform initial state, we find that the final phase
separation is strongly affected by interfacial instability.
The stable case, σcw > 0, was explored in [13]. For the
unstable case, σcw < 0, the stationary states seen by
varying the global density φ0 =

∫
φdr/V are reported in

Fig. 4 and Movie 2. When φ0 lies outside the mean-
field binodals φ1,2, the system remains homogeneous.
Within them, at large φ0 where the liquid is the ma-
jority phase, we find a microphase-separated state where
coalescence of crowded bubbles is highly inhibited. The
bubble size distribution P (A) is strongly peaked, increas-
ingly so as noise decreases, suggesting that the average
bubble size 〈A〉 is finite when D → 0. Our results are
converged in time for D > 0.1; at lower noise the sys-
tem gets trapped into metastable states, evolving only

because of rare fluctuations of the bubbles interface [42].
Clearly, the average size is not set by the most unsta-
ble mode of the flat interface, as the steady state is at-
tained through secondary instabilities (Movie 1 and 3).
This phenomenology is at odds with the bubble phase at
σcw > 0 [13], where a dynamical balance between nucle-
ation, coalescence and reversed Ostwald causes 〈A〉 → ∞
when D → 0. The difference between these two mi-
crophase separated states is also apparent dynamically
when starting from bulk phase separation (Movie 3).

When the liquid is the minority phase, bubbles can-
not avoid touching and coalescing. One might expect
that the system attains a micro-phase separated state
of liquid droplets (for ζ > 0); this is not the case be-
cause, as is clear from our mechanistic argument above,
the interfaces bends toward the vapor side. Instead, we
find a distinctive form of phase separation, which we call
the ‘active foam’ state. Thin filaments of liquid are dis-
persed in the vapor phase, which continuously break up
and reconnect. This state is previously unknown in ac-
tive scalar models but resembles patterns that can arise,
by a different mechanism, in active liquid crystals [51].
The filaments are bent on the most unstable length-scale
of the flat interface. The area distribution of vapor re-
gions (Fig. 4b) is now peaked at at size that corresponds
to the merging of two bubbles, but a power-law tail A−2

emerges, only cut off by the system-size. The boundaries
in φ0 between the different phases of Fig. 4 are quali-
tative: while the vapor density is almost independent of
φ0, the liquid density varies [42].

The techniques introduced here could help elucidate
σcw in particle-based active models, by applying them to
various field-theoretical descriptions obtained by explicit
coarse-graining [13, 41, 52], or to describe confluent bio-
logical tissues, where the measured interfacial tension was
shown to be dependent on the protocol [53]. The rough-
ening properties of the interface also merit further study:
the anomalous scaling found in particle-based simulations
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was interpreted to be in the Edwards-Wilkinson univer-
sality class [36, 37]. Dimensional analysis [54] of our
linear theory instead gives the critical exponents z = 3
and χ = (z − d)/2, where 〈ĥ(x, t)ĥ(x′, t)〉 ∼ |x − x′|2χ
and 〈ĥ(x, t)ĥ(x, t′)〉 ∼ |t − t′|2χ/z. The impact of non-
linearities should be studied by renormalisation methods.

Finally, it is remarkable that (a) the capillary tension
can likewise become negative, and that (b) this leads
to new types of phase separation including active foam
states. Our generic field-theoretical approach is agnos-
tic as to the microscopic mechanisms underlying activ-
ity (and even phase separation). Therefore the micro-
scopic ingredients needed for our new phases remain to
be identified. For the same reason, we expect them to
be widely present in phase-separating systems with lo-
cally broken detailed balance: besides motility-induced
phase separation [4], applications might encompass cell
sorting in biological tissues [53], tumor invasion [55] and
sociophysics [56].
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