
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum Principal Component Analysis Only Achieves an
Exponential Speedup Because of Its State Preparation

Assumptions
Ewin Tang

Phys. Rev. Lett. 127, 060503 — Published 4 August 2021
DOI: 10.1103/PhysRevLett.127.060503

https://dx.doi.org/10.1103/PhysRevLett.127.060503

Quantum principal component analysis only achieves an exponential speedup

because of its state preparation assumptions

Ewin Tang∗

University of Washington
(Dated: July 9, 2021)

A central roadblock to analyzing quantum algorithms on quantum states is the lack of a compara-
ble input model for classical algorithms. Inspired by recent work of the author [2], we introduce such
a model, where we assume we can efficiently perform ℓ2-norm samples of input data, a natural ana-
logue to quantum algorithms that assume efficient state preparation of classical data. Though this
model produces less practical algorithms than the (stronger) standard model of classical computa-
tion, it captures versions of many of the features and nuances of quantum linear algebra algorithms.
With this model, we describe classical analogues to Lloyd, Mohseni, and Rebentrost’s quantum
algorithms for principal component analysis [3] and nearest-centroid clustering [4]. Since they are
only polynomially slower, these algorithms suggest that the exponential speedups of their quantum
counterparts is simply an artifact of state preparation assumptions.

INTRODUCTION

Quantum machine learning (QML) has shown great
promise towards yielding new exponential quantum
speedups in machine learning, ever since the pioneering
linear systems algorithm of Harrow, Hassidim, and Lloyd
[5]. Since ML routines often push real-world limits of
computing power, an exponential improvement to algo-
rithm speed would allow for machine learning systems
with vastly greater capabilities. While we have found
many fast QML subroutines for machine learning prob-
lems since HHL [6–10], researchers have not been able
to prove that these subroutines can be used to achieve
an exponentially faster algorithm for a classical machine
learning problem, even in the strongest input and output
models [1, 11]. A recent work of the author [2] suggests
a surprising reason why: even our best QML algorithms,
with issues with input and output models resolved, fail
to achieve exponential speedups. This previous work con-
structs a classical algorithm matching, up to polynomial
slowdown, a corresponding quantum algorithm for recom-
mendation systems [12], which was previously believed to
be one of the best candidates for an exponential speedup
in machine learning [13]. In light of this result, we need
to question our intuitions and reconsider one of the guid-
ing questions of the field: when is quantum linear algebra
exponentially faster than classical linear algebra?

The main challenge in answering this question is not
in finding fast classical algorithms, as one might expect.
Rather, most QML algorithms are incomparable to clas-
sical algorithms, since they take quantum states as in-
put and output quantum states: we don’t even know an
analogous classical model of computation where we can
search for similar classical algorithms [1]. The quantum
recommendation system is unique in that it has a clas-
sical input (a data structure implementing QRAM) and
classical output (a sample from a vector in the compu-
tational basis), allowing for rigorous comparisons with
classical algorithms.

In our previous work we suggest an idea for develop-
ing classical analogues to QML algorithms beyond this
exceptional case [2]:

When QML algorithms are compared to clas-
sical ML algorithms in the context of finding
speedups, any state preparation assumptions
in the QML model should be matched with
ℓ2-norm sampling assumptions in the classi-
cal ML model.

In this work, we implement this idea by introducing a
new input model, SQ access, which is a form of ℓ2-norm
sampling assumption. We can get SQ access to data un-
der typical state preparation assumptions, so fast classi-
cal algorithms in this model are strong barriers to their
QML counterparts admitting exponential speedups. To
support that the resulting model is the right notion to
consider, we use it to dequantize two seminal and well-
known QML algorithms, quantum principal component
analysis [3] and quantum supervised clustering [4]. That
is, we give classical algorithms that, with classical SQ
access assumptions replacing quantum state preparation
assumptions, match the bounds and runtime of the cor-
responding quantum algorithms up to polynomial slow-
down. Surprisingly, we do so using only the classical
toolkit originally applied to the recommendation systems
problem, demonstrating the power of this model in ana-
lyzing QML algorithms.

From this work, we conclude that the exponential
speedups of the quantum algorithms that we consider
arise from strong input assumptions, rather than from
the quantum-ness of the algorithms, since they vanish
when classical algorithms are given analogous assump-
tions. In other words, in a wide swathe of settings, on
classical data, these algorithms do not give exponential
speedups. Dequantized algorithms can still be useful for
quantum data (say, states generated from a quantum sys-
tem), though a priori it’s not clear if they give a speedup
in that case, since the analogous “classical algorithm on

2

quantum data” isn’t well-defined.
Our dequantized algorithms in the SQ access model

provide the first formal evidence supporting the cru-
cial concern about strong input/output assumptions in
QML. Based on these results, we recommend exercis-
ing care when analyzing quantum linear algebra algo-
rithms, since some algorithms with poly-logarithmic run-
times only admit polynomial speedups. BQP-complete
QML problems, such as sparse matrix inversion [5] and
quantum Boltzmann machine training [14], still can-
not be dequantized in full unless BQP=BPP. However,
many QML problems that are not BQP-complete have
strong input model assumptions (like QRAM) and low-
rank-type assumptions (which makes sense for machine
learning, where high-dimensional data often exhibits low-
dimensional trends). This regime is precisely when the
classical approaches we outline here work, so such prob-
lems are highly susceptible to dequantization. We believe
continuing to explore the capabilities and limitations of
this model is a fruitful direction for QML research.

Notation. [n] := {1, . . . , n}. Consider a vector x ∈
Cn and matrix A ∈ Cm×n. Ai,∗ and A∗,i will re-
fer to A’s ith row and column, respectively. ‖x‖,
‖A‖F , and ‖A‖ will refer to ℓ2, Frobenius, and spectral
norm, respectively. |x〉 := 1

‖x‖
∑n

i=1 xi |i〉 and |A〉 :=
1

‖A‖F

∑m
i=1 ‖Ai,∗‖ |i〉 |Ai,∗〉 (where, by the previous defini-

tion, |Ai,∗〉 =
1

‖Ai,∗‖
∑n

j=1Ai,j |j〉). A =
∑minm,n

i=1 σiuiv
†
i

is A’s singular value decomposition, where ui ∈ Cm,
vi ∈ Cn, σi ∈ R, {ui} and {vi} are sets of orthonor-
mal vectors, and σ1 ≥ σ2 ≥ · · · ≥ σminm,n ≥ 0.

Aσ :=
∑

σi≥σ σiuiv
†
i and Ak :=

∑k
i=1 σiuiv

†
i denote low-

rank approximations to A. We assume basic arithmetic
operations take unit time, and Õ(f) := O(f log f).

THE DEQUANTIZATION MODEL

A typical QML algorithm works in the model where
state preparation of input is efficient and a quantum state
is output for measurement and post-processing. (Here,
we assume an ideal/fault-tolerant quantum computer.)
In particular, given a data point x ∈ Cn as input, we
assume we can prepare copies of |x〉. For m input data
points as a matrix A ∈ Cm×n, we additionally assume
efficient preparation of |A〉, to preserve relative scale. We
wish to compare QML and classical ML on classical data,
so state preparation usually requires access to this data
and its normalization factors. This informs the classical
input model for our quantum-inspired algorithms, where
we assume such access, and instead of preparing states,
we can prepare measurements of these states.

Definition. We haveO(T)-time sample and query access
to x ∈ Cn (notated SQ(x)) if, in O(T) time, we can query
an index i ∈ [n] for its entry xi; produce an independent
measurement of |x〉 in the computational basis; and query

for ‖x‖. If we can only query for an estimate of the
squared norm x̄ ∈ (1 ± ν)‖x‖2, then we denote this by
SQν(x). For A ∈ Cm×n, sample and query access to A
(notated SQ(A)) is SQ(A1,∗, . . . , An,∗) along with SQ(Ã)

where Ã is the vector of row norms, i.e. Ãi := ‖Ai,∗‖.

Sample and query (SQ) access will be our classical ana-
logue to quantum state preparation. As we noted pre-
viously [2], we should be able to assume that classical
analogues can efficiently measure input states: QML al-
gorithms shouldn’t rely on fast state preparation as the
“source” of an exponential speedup. The algorithm itself
should create the speedup.

For typical instantiations of state preparation oracles
on classical input, we can get efficient SQ access to in-
put. For example, given input in QRAM [15], a strong
proposed generalization of classical RAM that supports
state preparation, we can get log-dimension-time SQ ac-
cess to input [2, Proposition 3.2]. Similarly, sparse and
close-to-uniform vectors can be prepared efficiently, and
correspondingly admit efficient SQ access [16].

So, in usual QML settings, SQ assumptions are easier
to satisfy than state preparation assumptions.

This leads to a model based on SQ access that
we codify with the informal definition of “dequanti-
zation”. We say we dequantize a quantum protocol
S : O(T)-time state preparation of |φ1〉 , . . . , |φc〉 → |ψ〉
if we describe a classical algorithm of the form CS :
O(T)-time SQ(φ1, . . . , φc) → SQν(ψ) with similar guar-
antees to S up to polynomial slowdown. This is the
sense in which we dequantized the quantum recommen-
dation system in prior work [12]. In the rest of this ar-
ticle, we will dequantize two quantum algorithms, giv-
ing a detailed sketch of the algorithm and leaving proofs
of correctness to the supplemental material [16]. These
algorithms are applications of three protocols from our
previous work [2] rephrased in our access model.

NEAREST-CENTROID CLASSIFICATION

Lloyd, Mohseni, and Rebentrost’s quantum algorithm
for clustering estimates the distance of a data point
to the centroid of a cluster of points [4]. The paper
claims [17] that this quantum algorithm gives an expo-
nential speedup over classical algorithms. We dequantize
Lloyd et al’s quantum supervised clustering algorithm
[4] with only quadratic slowdown. Though classical algo-
rithms by Aaronson [1] and Wiebe et al. [18, Section 7]
dequantize this algorithm for close-to-uniform input and
sparse input, we are the first to give a general classical
algorithm for this problem.

Problem 1 (Centroid distance). Suppose we are given
access to V ∈ Cn×d and u ∈ Cd. Estimate ‖u − 1

n
~1V ‖2

to ε additive error with probability ≥ 1− δ.

3

Note that we are treating vectors as rows, with ~1 the
vector of ones. Let ū := u

‖u‖ and let V̄ be V , normalized

so all rows have unit norm. Both classical and quantum
algorithms argue about M ∈ R(n+1)×d and w ∈ Rn+1

instead of u and V , where

M :=

[

ū
1√
n
V̄

]

and w :=
[

‖u‖ − 1√
n
Ṽ
]

.

Because wM = u− 1
n
~1V , we wish to estimate ‖wM‖2 =

wMM †w†. Let Z := ‖w‖2 = ‖u‖2 + 1
n‖V ‖2F be an “aver-

age norm” parameter appearing in our algorithms.

Theorem 2 (Quantum Nearest-Centroid [4]). Suppose
that, in O(T) time, we can (1) determine ‖u‖ and ‖V ‖F ;
or (2) prepare a state |u〉 , |V1〉 , . . . , |Vn〉, or |Ṽ 〉. Then
we can solve Problem 1 in O(T Z

ε log 1
δ) time.

The quantum algorithm proceeds by constructing the
states |M〉 and |w〉, then performing a swap test to
get |wM〉. The swap test succeeds with probability
1
ZwMM †w†, so we can run amplitude amplification to
get an estimate up to ε error with O(1ε log

1
δ) overhead.

Dequantizing this algorithm is simply a matter of de-
quantizing the swap test, which is done in Algorithm 1.
Here, Q(y) is query access to y, which supports querying
y’s entries in O(1) time, but no sampling or norm queries.

Algorithm 1 Inner product estimation

Input: O(T)-time SQν(x) ∈ C
n, Q(y) ∈ C

n

Output: an estimate of 〈x|y〉
1: Let s = 54 1

ε2
log 2

δ

2: Collect measurements i1, . . . , is from |x〉

3: Let zj = x†
ij
yij

‖x‖2
|xij

|2 for all j ∈ [s] ⊲ E[zj] = 〈x|y〉

4: Separate the zj ’s into 6 log 2
δ

buckets of size 9
ε2

, and take
the mean of each bucket

5: Output the (component-wise) median of the means

From a simple analysis of the random variable zi’s, we
get the following result.

Proposition 3 ([2, Proposition 4.2]). For x, y ∈ Cn,
given SQν(x) and Q(y), Algorithm 1 outputs an estimate
of 〈x|y〉 to (ε+ν+εν)‖x‖‖y‖ error with probability ≥ 1−δ
in time O(T

ε2 log
1
δ).

For this protocol, quantum algorithms can achieve
a quadratic speedup via amplitude estimation (but no
more, by unstructured search lower bounds [19]). To ap-
ply this to nearest-centroid, we write wMM †w† as an
inner product of tensors 〈a|b〉, where

a :=

d
∑

i=1

n+1
∑

j=1

n+1
∑

k=1

Mji‖Mk,∗‖ |i〉 |j〉 |k〉 =M ⊗ M̃ ;

b :=
d

∑

i=1

n+1
∑

j=1

n+1
∑

k=1

wjwkMki

‖Mk,∗‖
|i〉 |j〉 |k〉 .

Then, we show we have SQ access to one of the tensors
(a). With this, we see that the quadratic speedup from
amplitude amplification is the only speedup that quan-
tum nearest-centroid achieves:

Theorem 4 (Classical Nearest-Centroid). Suppose we
are given O(T)-time SQ(V) ∈ Cn×d and SQ(u) ∈
Cd. Then one can output a solution to Problem 1 in

O(T Z2

ε2 log 1
δ) time.

PRINCIPAL COMPONENT ANALYSIS

We now dequantize Lloyd, Mohseni, and Rebentrost’s
quantum principal component analysis (QPCA) algo-
rithm [3], an influential early example of QML [20, 21].
While the paper describes a more general strategy for
Hamiltonian simulation of density matrices, their central
claim is an exponential speedup in an immediate appli-
cation: producing quantum states corresponding to the
top principal components of a low-rank dataset [3].

The setup for the problem is as follows: suppose we
are given a matrix A ∈ R

n×d whose rows correspond to
data in a dataset. We will find the principal eigenvectors
and eigenvalues of A†A; when A is a mean zero dataset,
this corresponds to the top principal components.

Problem 5 (Principal component analysis). Suppose we
are given access to A ∈ Cn×d with singular values σi and
right singular vectors vi. Further suppose we are given σ,
k, and η with the guarantee that, for all i ∈ [k], σi ≥ σ
and σ2

i −σ
2
i+1 ≥ η‖A‖2F . With probability ≥ 1−δ, output

estimates σ̂2
1 , . . . , σ̂

2
k and v̂1, . . . , v̂k satisfying |σ̂2

i −σ2
i | ≤

εσ‖A‖
2
F and ‖v̂i − vi‖ ≤ εv for all i ∈ [k].

Denote ‖A‖2F/σ
2 by K. Lloyd et al. get the following:

Theorem 6. Given ‖A‖F and the ability to prepare
copies of |A〉 in O(T) time, a quantum algorithm can
output the desired estimates for Problem 5 σ̂2

1 , . . . , σ̂
2
k and

|v̂1〉 , . . . , |v̂k〉 in Õ(TKmin(εσ, δ)
−3) time.

Later results [12, 22, Theorems 5.2, 27] improve the
runtime here to Õ(TKε−1

σ polylog(nd/δ)) when A is
given in QRAM. We will compare to the original QPCA
result.

To dequantize QPCA, we use a similar high-level idea
to that of the quantum-inspired recommendation system
[2]. We begin by using a low-rank approximation algo-
rithm, Algorithm 2, to output a description of approxi-
mate top singular values and vectors.

Algorithm 2 finds the large singular vectors of A by
reducing its dimension down to W , whose SVD we can
compute quickly. Then, S, Û , Σ̂ define approximate large
singular vectors V̂ := S†Û Σ̂−1. The full set of guaran-
tees on the output of Algorithm 2 are in the supplemen-
tal material [16], but in brief, for the right setting of
parameters, the columns of V̂ and the diagonal entries

4

of Σ̂ satisfy the desired constraints for our v̂i’s and σ̂i’s
in Problem 5. The σ̂i’s are output explicitly, but the
v̂i’s are described implicitly: v̂i = S†Û∗,i/σ̂i. We have
O(T)-time SQ(S) because all rows are normalized, and
rows of S are simply rows of A. Thus, sampling from S̃
is a uniform sample from [q] and sampling from Si,∗ is

sampling from a row of A. Û∗,i is an explicit vector, so
in essence, we need SQ access to a linear combination of
vectors, each of which we have SQ access to.

Algorithm 2 Low-rank approximation [23]

Input: O(T)-time SQ(A) ∈ R
m×n, σ, ε, δ

Output: SQ(S) ∈ C
ℓ×n,Q(Û) ∈ C

q×ℓ,Q(Σ̂) ∈ C
ℓ×ℓ

1: Set K = ‖A‖2F /σ
2 and q = Θ

(

K4

ε2
log(1

δ
)
)

2: Sample rows i1, . . . , iq from Ã and define S ∈ R
q×n such

that Sr,∗ := Air,∗
‖A‖F√
q‖Air,∗‖

3: Sample columns j1, . . . , jq from F, where F denotes the
distribution given by sampling a uniform r ∼ [q], then
sampling c from Sr.

4: Let W ∈ C
q×q be the normalized submatrix W∗,c :=

S
∗,jc

qF(jc)

5: Compute the left singular vectors of W û(1), . . . , û(ℓ) that
correspond to singular values σ̂(1), . . . , σ̂(ℓ) larger than σ

6: Output SQ(S), Û ∈ R
q×ℓ the matrix with columns û(i),

and Σ̂ ∈ R
ℓ×ℓ the diagonal matrix with entries σ̂(i).

Algorithm 3 does exactly this: it uses rejection sam-
pling to dequantize the swap test over a subset of qubits
(getting |V w〉 via 〈V | (|w〉 ⊗ I)).

Algorithm 3 Matrix-vector SQ access

Input: O(T)-time SQ(V †) ∈ C
k×n, Q(w) ∈ C

k

Output: SQν(V w)
1: function RejectionSample(SQ(V †),Q(w))
2: Sample i ∈ [k] proportional to |wi|

2‖V∗,i‖
2 by manu-

ally calculating all k probabilities
3: Sample s ∈ [n] from V∗,i using SQ(V †)

4: Compute rs = (V w)2s/(k
∑k

j=1(Vsjwj)
2) (after query-

ing for wj and Vsj for all j ∈ [k])
5: Output s with probability rs (success); otherwise, out-

put ∅ (failure)
6: end function

7: Query: output (V w)s
8: Sample: run RejectionSample until success (out-

putting s) or kC(V,w) log 1
δ

failures (outputting ∅)
9: Norm(ν): Let p be the fraction of successes from run-

ning RejectionSample k
ν2 C(V,w) log 1

δ
times; output

pk
∑k

i=1 |wi|
2‖V∗,i‖

2

Proposition 7 ([2, Proposition 4.3]). For V ∈
C

n×k, w ∈ C
k, given SQ(V †) and Q(w), Algorithm 3

simulates SQν(V w) where the time to query is O(Tk),
sample is O(Tk2C(V,w) log 1

δ), and query norm is
O(Tk2C(V,w) 1

ν2 log
1
δ). Here, δ is the desired failure

probability and C(V,w) =
∑

‖wiV∗,i‖2/‖V w‖2.

In general, C(V,w) may be arbitrarily large, but in
this application it is O(K). Quantum algorithms achieve
a speedup here when k is large and C(V,w) is small, such
as when V is a high-dimensional unitary, confirming our
intuition that unitary operations are hard to simulate
classically.

Altogether, we get our desired result.

Theorem 8. Given O(T)-time SQ(A) ∈ Cn×d,
with εσ, εv, δ ∈ (0, 0.01), there is an algorithm
that output the desired estimates for Problem 5

σ̂1, . . . , σ̂k and O(T K9

ε4 log3(kδ))-time SQ0.01(v̂1, . . . , v̂k)

in O(K
12

ε6 log3(kδ) + T K8

ε4 log2(kδ)) time, where ε =

min(0.1εσK
1.5, ε2vη,

1
4K

−1/2).

Under the non-degeneracy condition η ≤ 1
4K

−1/2, this

runtime is Õ(T K12

ε6σε
12
v

log3(1δ)). While the classical run-

time depends on εv, note that a quantum algorithm must
also incur this error term to learn about vi from copies
of |vi〉. For example, computing entries or expectations
of observables of vi given copies of |vi〉 requires poly(1

εv
)

or poly(n) time.

DISCUSSION

We have introduced the SQ access assumption as a clas-
sical analogue to the QML state preparation assumption
and demonstrated two examples where, in this classical
model, we can dequantize QML algorithms with ease. We
now discuss the implications of this work with respect to
related literature.

A natural question is of this work’s relation to clas-
sical literature: does this work improve on classical al-
gorithms for linear algebra in any regime? The answer
may be no, for a subtle but fundamental reason: recall
that our main idea is to introduce an input model strong
enough to give classical versions of QML while being weak
enough to extend to settings like QRAM, where classi-
cal computers can only access the input in very limited
ways. In particular, the SQ access model that we study
is weaker than the typical input model used for classi-
cal sketching algorithms [24–26]. O(T)-time algorithms
in the quantum-inspired access model are Õ(nnz + T)-
time algorithms in the usual RAM model (where nnz
is the number of nonzero entries of the input), but not
vice versa: typical sketching algorithms can exploit bet-
ter data structures provided they only take O(nnz) time
(e.g. oblivious sketches), whereas the quantum-inspired
model can only use the QRAM data structure. The cru-
cial insight of this work is that some algorithms (such as
Algorithm 2 of Frieze et al. [23]) generalize to the weaker
quantum-inspired model. Our algorithms give exponen-
tial speedups in the quantum-inspired setting, but since
the model is weaker, one might expect that they perform
worse in typical settings for classical computation (see

5

[27]). These model considerations also explain why we
use Frieze et al. [23]: to our knowledge, this algorithm is
the only one from the classical literature that naturally
generalizes to the SQ input model.

The closest analogue to these results and techniques is
a work by Van den Nest on probabilistic quantum simu-
lation [28], which describes a notion of “computationally
tractable” (CT) states that corresponds to our notion
of SQ access for vectors. With this notion, the author
describes special types of circuits on CT states where
weak simulation is possible, using variants of Proposi-
tions 3 and 7. However, Van den Nest’s work does not
have a version of Algorithm 2, since this technique only
runs quickly on low-rank matrices, making it ineffective
on generic quantum circuits. We exploit this low-rank
structure for efficient quantum simulation of a small-but-
practically-relevant class of circuits: quantum linear alge-
bra on data with low-rank structure. So, our techniques
used for supervised clustering are within the scope of Van
den Nest’s work, whereas our techniques for PCA are new
to this line of work.

These techniques are not new to quantum simulation
in general. Others have considered applying randomized
numerical linear algebra to quantum simulation [29], but
does not make the connection towards dequantizing quan-
tum algorithms, especially in large generality. Low-rank
approximation is crucial for tensor network simulations of
quantum systems [30, 31], where simulation can be done
efficiently provided the input is, say, a matrix product
state with low tensor rank. In this context, low-rank ap-

proximation is often performed exactly and only on a sub-
set of the space, instead of approximately done on the full
state, as is done here. This reflects the fact that tensor
network algorithms assume that the system is reasonably
approximated by a tensor network and aims to work well
in practice, whereas our “dequantized” algorithms must
work on a broader class of input and prioritizes provable
guarantees in an abstract computational model over real-
world performance. Nevertheless, some of these dequan-
tized algorithms might be able to be matched by tensor
network contraction techniques, when the input has low
tensor rank. See the supplemental material for further
discussion of this comparison [16].

Since this work, numerous follow-ups have cemented
the significance of the SQ access model introduced here
[32–35]. In particular, a recent work [34] essentially de-
quantizes the singular value transformation framework
of Gilyen et al. [36] when input is given in QRAM.
These works use fundamentally the same techniques
to dequantize a wide swathe of low-rank quantum ma-
chine learning—an exciting step forward in understand-
ing QML.

Thanks to Ronald de Wolf for giving the initial idea
to look at QPCA. Thanks to Nathan Wiebe for helpful
comments on this document. Thanks to Daniel Liang
and Patrick Rall for their help fleshing out these ideas
and reviewing a draft of this document. Thanks to Scott
Aaronson for helpful discussions. This material is based
upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No.
DGE-1762114.

∗ ewint@cs.washington.edu; ewintang.com
[1] S. Aaronson, Nature Physics 11, 291 (2015).
[2] E. Tang, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing - STOC 2019 (ACM Press,

2019) arXiv:1807.04271 [cs.IR].
[3] S. Lloyd, M. Mohseni, and P. Rebentrost, Nature Physics 10, 631 (2014).
[4] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv (2013), arXiv:1307.0411 [quant-ph].
[5] A. W. Harrow, A. Hassidim, and S. Lloyd, Physical review letters 103, 150502 (2009).
[6] P. Rebentrost, M. Mohseni, and S. Lloyd, Physical review letters 113, 130503 (2014).
[7] N. Wiebe, D. Braun, and S. Lloyd, Physical review letters 109, 050505 (2012).
[8] S. Lloyd, S. Garnerone, and P. Zanardi, Nature Communications 7, 10138 (2016).
[9] Z. Zhao, J. K. Fitzsimons, and J. F. Fitzsimons, Physical Review A 99, 052331 (2019), arXiv:1512.03929 [quant-ph].

[10] F. G. Brandao and K. M. Svore, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)
(IEEE, 2017).

[11] A. M. Childs, Nature Physics 5, 861 (2009).
[12] I. Kerenidis and A. Prakash, in 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), LIPIcs, Vol. 67

(Schloss Dagstuhl, 2017) pp. 49:1–49:21.
[13] J. Preskill, Quantum 2, 79 (2018).
[14] M. Kieferová and N. Wiebe, Phys. Rev. A 96, 062327 (2017).
[15] V. Giovannetti, S. Lloyd, and L. Maccone, Physical review letters 100, 160501 (2008).
[16] See supplemental material for details on when sample and query access is possible; discussion on the relation of this work

to the tensor networks literature; and full proofs for the results stated here. It includes Refs. [37–47].
[17] We were not able to verify the quantum algorithm (namely, the Hamiltonian simulation for preparing |φ〉) as stated. For

our purposes, we can make the minor additional assumption of efficient state preparation access to |φ〉, which makes
correctness obvious. When we refer to the quantum algorithm in this letter, we mean this version of it.

6

[18] N. Wiebe, A. Kapoor, and K. M. Svore, Quantum Information and Computation 15, 316–356 (2015).
[19] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, SIAM Journal on Computing 26, 1510 (1997).
[20] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017).
[21] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, and L. Wossnig, Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences 474, 20170551 (2018).
[22] S. Chakraborty, A. Gilyén, and S. Jeffery, in 46th International Colloquium on Automata, Languages, and Programming

(ICALP 2019), LIPIcs (Schloss Dagstuhl, 2019) arXiv:1804.01973 [quant-ph].
[23] A. Frieze, R. Kannan, and S. Vempala, Journal of the ACM (JACM) 51, 1025 (2004).
[24] M. W. Mahoney, Foundations and Trends® in Machine Learning 3, 123 (2011).
[25] D. P. Woodruff, Foundations and Trends® in Theoretical Computer Science 10, 10.1561/0400000060 (2014).
[26] R. Kannan and S. Vempala, Acta Numerica 26, 95 (2017).
[27] J. M. Arrazola, A. Delgado, B. R. Bardhan, and S. Lloyd, Quantum 10.22331/q-2020-08-13-307 (2020), arXiv:1905.10415

[quant-ph].
[28] M. Van Den Nest, Quantum Info. Comput. 11 (2011).
[29] A. Rudi, L. Wossnig, C. Ciliberto, A. Rocchetto, M. Pontil, and S. Severini, Quantum 4, 234 (2020), arXiv:1804.02484

[quant-ph].
[30] U. Schollwöck, Annals of Physics 326, 96 (2011).
[31] R. Orús, Annals of Physics 349, 117 (2014).
[32] N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang, in 31st International Symposium on Algorithms and

Computation (ISAAC 2020), LIPIcs (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020).
[33] N.-H. Chia, T. Li, H.-H. Lin, and C. Wang, in 45th International Symposium on Mathematical Foundations of Computer

Science (MFCS 2020), LIPIcs (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020) arXiv:1901.03254 [cs.DS].
[34] N.-H. Chia, A. Gilyén, T. Li, H.-H. Lin, E. Tang, and C. Wang, in Proceedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing - STOC 2020 (ACM Press, 2020) arXiv:1910.06151 [cs.DS].
[35] D. Jethwani, F. L. Gall, and S. K. Singh, in 45th International Symposium on Mathematical Foundations of Computer

Science (MFCS 2020), LIPIcs (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020) arXiv:1910.05699 [cs.DS].
[36] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of

Computing - STOC 2019 (ACM Press, 2019) arXiv:1806.01838 [quant-ph].
[37] A. Prakash, Quantum algorithms for linear algebra and machine learning., Ph.D. thesis, UC Berkeley (2014).
[38] L. Grover and T. Rudolph, arXiv (2002), arXiv:0208112 [quant-ph].
[39] F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423 (2006).
[40] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[41] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[42] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[43] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, Found. Trends Mach. Learn. 9, 249–429 (2016).
[44] J. C. Bridgeman and C. T. Chubb, Journal of Physics A: Mathematical and Theoretical 50, 223001 (2017).
[45] J. Eisert, Phys. Rev. Lett. 97, 260501 (2006).
[46] Z. Landau, U. Vazirani, and T. Vidick, Nature Physics 11, 566 (2015).
[47] W. Hoeffding, Probability inequalities for sums of bounded random variables, in The Collected Works of Wassily Hoeffding ,

edited by N. I. Fisher and P. K. Sen (Springer New York, New York, NY, 1994) pp. 409–426.

