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We report observation of quasiparticle pair-production by a modulational instability in an atomic
superfluid and present a measurement technique that enables direct characterization of quasiparticle
quantum entanglement. By quenching the atomic interaction to attractive and then back to weakly
repulsive, we produce correlated quasiparticles and monitor their evolution in a superfluid through
evaluating the in situ density noise power spectrum, which essentially measures a ‘homodyne’ in-
terference between ground state atoms and quasiparticles of opposite momenta. We observe large
amplitude growth in the power spectrum and subsequent coherent oscillations in a wide spatial
frequency band within our resolution limit, demonstrating coherent quasiparticle generation and
evolution. The spectrum is observed to oscillate below a quantum limit set by the Peres-Horodecki
separability criterion of continuous-variable states, thereby confirming quantum entanglement be-
tween interaction quench-induced quasiparticles.

Coherent pair-production processes are enabling mech-
anisms for entanglement generation in continuous vari-
able states [1, 2]. In many-body systems, quasiparti-
cle pair-production presents an interesting case, as in-
teraction creates entanglement shared among collectively
excited interacting particles. Entanglement distribution
through quasiparticle propagation is a direct manifesta-
tion of transport property in a quantum many-body sys-
tem [3, 4]. Controlling quasiparticle pair-production and
detecting entanglement evolution thus opens a door to
probing quantum many-body dynamics, enabling funda-
mental studies such as information propagation [5, 6],
entanglement entropy evolution [7], many-body thermal-
ization [8], as well as Hawking radiation of quasiparticles
and thermodynamics of an analogue black hole [9–11].

In atomic quantum gases, coherent quasiparticle pair-
production can be stimulated through an interaction
quench, which results in a rapid change of quasiparti-
cle dispersion relation that can project collective exci-
tations, from either existing thermal or quantum pop-
ulations, into a superposition of correlated quasiparti-
cle pairs [12–14]. This has led to a prior observation
of Sakharov oscillations in a quenched atomic superfluid
[13, 15]. However, direct verification of quasiparticle en-
tanglement has remained an open question.

An intriguing case occurs when the atomic interaction
is quenched to an attractive value. In that case, not only
a larger change of quasiparticle dispersion is involved,
there is also an unstable band, in which quasiparticle
dispersion ε(k) is purely imaginary, ε2(k) < 0, where k
is the momentum wavenumber. As a consequence, the
early time dynamics is governed by a modulational in-
stability (MI), which continuously stimulates production
of quasiparticle pairs, and the ground state becomes un-
stable with respect to an exponential growth of density
waves. This growth leads eventually to wave fragmen-

tation and soliton formation [16]. Although these con-
sequences of MI have been observed [17–21], the early-
time evolution itself has only been recently studied [21].
Nevertheless, it is precisely the early-time dynamics that
promises MI-enhanced pair-production and quantum en-
tanglement. We note there is a parallel scheme using a
roton instability for enhanced quasiparticle entanglement
generation in dipolar quantum gases [22].

In this letter, we demonstrate MI-enhanced coherent
quasiparticle pair-production in a homogeneous 2D quan-
tum gas quenched to an attractive interaction, and report
an in situ detection method that enables direct character-
ization of quasiparticle entanglement beyond an existing
method [9, 23]. Specifically, we monitor coherent quasi-
particle evolution after quenching the interaction back
to a positive value (see Fig. 1 for protocol). Through
in situ imaging, we analyze the dynamics of density ob-
servables by a method analogous to the well-established
homodyne detection technique in quantum optics [24–26]
and confirm non-classical correlations, that is, quantum
entanglement in quasiparticle pairs.

Our analyses are based on the time evolution of in
situ density noise, which is a manifestation of interfer-
ence between quasiparticle excitations and the ground
state atoms that serve as a coherent local oscillator [28].
In Fourier space, the density noise operator can be writ-
ten as δn̂k ≈

√
N(â†k + â−k), where N � 1 is the total

atom number nearly all accounted for by the ground state

atoms, and â
(†)
±k are the annihilation (creation) opera-

tors for ±k single-particle momentum eigenstates. They
are related to quasiparticle operators α̂†±k by the Bo-
goliubov transformation. We study the density noise
power spectrum S(k) = 〈|δnk|2〉/N , where 〈· · ·〉 de-
notes ensemble averaging. Within our resolution limit
(|k| . 2.6/µm), the power spectrum conveniently mea-
sures the combined variance of two-mode (±k) quasi-
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FIG. 1. Experiment scheme for quasiparticle pair-production
and detection. (a) A homogeneous 2D superfluid (red square)
undergoes an interaction quench protocol from (i) g = gi > 0
to gMI < 0 for broadband generation of quasiparticle pairs
of opposite momenta (illustrated by black curvy arrows) for
a time duration ∆τ ; (ii) A second interaction quench to
g = gf > 0 allows quasiparticles to evolve as phonons for
a variable hold time τ ; (iii) In situ density noise in spatial
frequency domain, δnk, is essentially a ‘homodyne’ measure-
ment of excitations in opposite momentum states interfering
with ground state atoms. (b-e) Single-shot density images
taken prior to (b) or after the interaction quench (c-e) and
held for the indicated time τ . Image size: 77×77 µm2.

particle quadrature operators x̂k + x̂−k and p̂k − p̂−k,
where x̂k = (α̂†k + α̂k)/

√
2 and p̂k = i(α̂†k − α̂k)/

√
2 [27].

Since pair-production should be isotropic in our quan-
tum gas samples, in the following we discuss azimuthally
averaged spectrum S(k), and use ±k to denote opposite
momenta. In the superfluid ground state absent quasi-
particle (phonon) excitations, the Bogoliubov theory pre-
dicts S(k) = Ck, where Ck = εk/ε(k, g) is the ground-
state squeezing parameter, εk the single-particle energy,

ε(k, g) =
√
ε2k + 2~2

m n̄gεk the phonon dispersion relation,

n̄ the mean density, g the interaction at the time of the
measurement, m the atomic mass, and ~ the reduced
Planck constant.

In the presence of quasiparticles with non-classical cor-
relation, the power spectrum would squeeze below the
ground-state level, i.e., to S(k) < Ck. This intuitive
bound can be formally derived following Refs. [29, 30],
which considers a continuous-variable version of the
Peres-Horodecki separability criterion for bipartite en-
tanglement. Adapted to our case [27], the criterion states
that the variance of two-mode quadratures must satisfy

S(k) =
Ck
2

[
〈(x̂k + x̂−k)2〉+ 〈(p̂k − p̂−k)2〉

]
≥ Ck , (1)

in the absence of quasiparticle entanglement. For non-
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FIG. 2. Growth of density noise during the MI period. Den-
sity noise power spectra measured before, S0(k) (open circles),
and right after the MI period, S(k, 0), with ∆τ ≈ 1 ms (gray
circles) and 2 ms (black squares), respectively. Horizontal
dashed line marks the atomic shot-noise level. Gray band
represents calculated initial phonon spectrum assuming equi-
librium temperature T = 8 ± 2 nK. Dashed curve shows the
squeezing parameter Ck at g = gi ≈ 0.127. Solid curves are
theory fits to data; see text [27]. Vertical dotted line marks
the wavenumber kc, below (above) which quasiparticles are
expected to be unstable (stable) at g = gMI ≈ −0.026.

interacting atoms (g = 0), Ck = 1, and the above in-
equality represents the limit of atomic shot-noise. For
phonons in a superfluid (g > 0), the separability crite-
rion requires a lower limit (Ck < 1).

In the final state of our quench protocol (g > 0), co-
herent quasiparticle pairs interfere and S(k) should be
time-dependent. In the special case of noninteracting
phonons, that dependence has the form

S(k, τ) = Ck
[
1 + N̄k + ∆Nk cosφk(τ)

]
, (2)

where N̄k = 〈α̂†kα̂k〉+〈α̂
†
−kα̂−k〉 is the mean total phonon

number in ±k modes, ∆Nk = 2|〈α̂kα̂−k〉| is the pair cor-
relation amplitude, and φk(τ) = 2ε(k, g)τ/~+φk(0) is the
argument of 〈α̂kα̂−k〉 that evolves at twice the phonon
frequency. In this case, violation of the inequality Eq. (1)
is equivalent to having ∆Nk > N̄k [31, 32]. The presence
of maximal two-mode squeezing S(k)/Ck < 1 occurs at
φk ≈ (2l + 1)π, alternating with maximal anti-squeezing
S(k)/Ck > 1 at φk ≈ 2lπ (l is an integer). In practice,
oscillations of S(k) are inevitably damped. Nevertheless,
±k modes are entangled as long as ∆Nk remains larger
than N̄k, or more generally S(k) shows squeezing (< Ck)
– a key signature that we demonstrate in this letter.

To carry out the experiment, we prepare uniform su-
perfluid samples formed by N ≈ 4.9 × 104 nearly pure
Bose-condensed cesium atoms loaded inside a quasi-2D
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box potential, which compresses all atoms in the har-
monic ground state along the imaging (z-) direction
[21] with lz = 184 nm being the harmonic oscillator
length. A time-of-flight measurement estimates the sam-
ple temperature T . 8 nK. Mean atomic surface density
n̄ ≈ 21/µm2 is approximately uniform within a horizon-
tal box size of ≈ 48×48 µm2. The interaction strength of
the quasi-2D gas g =

√
8πa/lz is controlled by the s-wave

scattering length a via a magnetic Feshbach resonance
[33], giving an initial interaction strength g = gi ≈ 0.127.
An uncertainty in g (δg ≈ ±0.0006) is primarily con-
tributed by the uncertainty in the magnetic field at the
scattering length zero-crossing [21].

As illustrated in Fig. 1(a), an MI period is initiated
by quenching the atomic interaction (within 0.8 ms) to a
negative value gMI ≈ −0.026. The quench time scale is
short compared to the initial phonon cycle 2π~/ε(k, gi) &
2.5 ms for k . 2.6/µm, and the interaction quench is
considered quasi-instantaneous. To terminate the MI af-
ter additional short hold time ∆τ ≈ 1–2 ms, we quench
the atomic interaction back to a small positive value
gf ≈ 0.007, allowing quasiparticles to evolve as phonons
in a stable superfluid for another variable time τ before
we perform in situ absorption imaging. We have also
analyzed quenches without an MI period (∆τ = 0). Fig-
ures 1(b-e) show sample images measured before and af-
ter we initiate the quench protocol. We evaluate δnk
for each sample through Fourier analysis [34] and obtain
their density noise power spectra. Typically around 50
experiment repetitions are analyzed for each hold time τ .
Each power spectrum has been carefully calibrated with
respect to the atomic shot-noise measured from high tem-
perature normal gases [27, 34].

We expect amplified density fluctuations following the
MI period due to sudden change of quasiparticle energy
dispersion and pair-production [12, 13, 21]. To quantify
the growth of density fluctuations, in Fig. 2 we com-
pare the density noise power spectra measured before
and immediately after the MI period, that is, for hold
time τ = 0. Before MI, the initial spectrum S0(k) is
mostly below the atomic shot-noise due to low temper-
ature T . 8 nK and small initial squeezing parameter
Ck < 1. Excessive noise in k . 0.75/µm may be due
to technical heating in the box potential. After the MI
time period ∆τ , we indeed find a significant increase in
the density noise, S(k, 0) > 1. The growth occurs both in
the instability band k . kc = 2

√
n̄|gMI| ≈ 1.5/µm, where

the dispersion ε(k, gMI) is purely imaginary, and in the
stable regime k & kc as well. Within these short MI pe-
riods, we observe the largest growth near k ≈ kc, where
ε(k, gMI) ≈ 0. We comment that for a much longer MI
period, density waves in the instability band eventually
dominate the noise power spectrum due to continuously
stimulated quasiparticle pairs, as observed in [21].

Our measured spectra can be well-captured by a
model that considers coherent evolution from quasipar-
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FIG. 3. Coherent oscillations in the density noise power
spectrum. (a) Full evolution of the power spectrum S(k, τ)
with ∆τ ≈ 1 ms, showing coherent oscillations in time
and k-space. (b-d) Synchronized oscillations of S(k, τ̃)
plotted in the rescaled time unit τ̃ = γk,fτ for various
k ≈ (1, 1.3, 1.6, 1.8, 2.1, 2.2)/µm (Gray circles from bright
to dark). Horizontal dashed lines mark the atomic shot-
noise limit. Solid lines are sinusoidal fits. Fitted amplitude
Ak, phase offset φ0, and decay rate Γ̃k from samples with
∆τ ≈ 0 ms (filled circles), 1 ms (filled squares), and 2 ms
(filled triangles) are plotted in (e-g), respectively.

ticle pair-production within the Bogoliubov theory and
their damping as well as decoherence due to coupling to
single-particle Markovian quantum noise (for details, see
Supplemental Information [27]). We refer to the coherent
signal in the absence of damping as: Scoh(k) = S0(k)[1+
ε(k,gi)

2−ε(k,gMI)
2

ε(k,gMI)2
sin2 ε(k,gMI)∆τ

~ ], which describes the hy-

perbolic growth of density fluctuations in the instabil-
ity band (k . kc) [21] and sinusoidal Sakharov oscil-
lations for stable modes (k & kc) [13]. On the other
hand, quantum noise causes damping (reduction) of the
coherent signal and the appearance of an additive inco-
herent background Sinc(k). The total power spectrum at
the end of the MI period is S(k, 0) = e−Γk∆τScoh(k) +

Sinc(k), where Sinc(k) = 1
2{η−

Γ2
k

Γ2
k+4ε(k,gMI)2/~2 [1 −

e−Γk∆τ (cos 2ε(k,gMI)∆τ
~ − 2ε(k,gMI)

~Γk
sin 2ε(k,gMI)∆τ

~ )]+η+(1−
e−Γk∆τ )}, with η± = 1±ε2k/ε(k, gMI)

2. The coherent and
incoherent contributions are coupled by a k-dependent
damping rate Γk. Our theory fits (solid curves in Fig. 2)
suggest Γk ∼ 0.5εk/~ [27], which is of the same order of
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magnitude as the decay rate extracted from the subse-
quent time-evolution measurements at g = gf (Fig. 3).

To demonstrate phase coherence and pair-correlation
in quasiparticles, we plot the complete time and mo-
mentum dependence of the density noise power spectrum
S(k, τ), as shown in Fig. 3(a). Here, oscillatory behavior
is clearly visible over the entire spectrum. The oscil-
lations are a manifestation of the interference between
coherent quasiparticles of opposite momenta ±k, as sug-
gested by Eq. (2), with the relative phase winding up in
time as φk(τ) = 2γk,fτ + φ0, where γk,f = ε(k, gf )/~ is
the expected Bogoliubov phonon frequency and φ0 is an
initial phase difference. In Fig. 3(b-d), we plot S(k, τ̃)
in the rescaled time τ̃ = γk,fτ and confirm that all spec-
tra oscillate synchronously with a time period ≈ π, thus
validating the phonon interference picture. For compar-
ison, we also plot the evolution of samples with a direct
interaction quench from gi to gf without an MI period
(∆τ = 0). Oscillations in S(k, τ̃) can also be observed,
albeit with smaller amplitudes and phase offsets φ0 ≈ 0,
as these oscillations result solely from the interference
of in-phase quasiparticle projections from suddenly de-
creasing the Bogoliubov energy [13]. In either case, with
or without MI, we observe that phase coherence is lost
in a few cycles and the density noise spectra reach new
steady-state values.

To quantify phase coherence and dissipation at final
g = gf , we perform simple sinusoidal fits S(k, τ̃) =

Sf − Soe−Γ̃k τ̃ −Ake−Γ̃k τ̃ cos(2τ̃ + φ0) to the data to ex-

tract (Ak, φ0, Γ̃k), as shown in Fig. 3(e-g) (the steady-
state values Sf and So are not shown). The larger oscil-
lation amplitudes Ak found in samples with ∆τ ≈ 1 ms
and 2 ms show that MI-induced quasiparticles are highly
phase coherent. This can also be seen in the non-zero
phase offset φ0 & π/2 at k & 0.5/µm in Fig. 3(f), which is
coherently accumulated during the MI period. Further-
more, in Fig. 3(g), we observe a nearly constant decay
rate Γ̃k ≈ 0.31(8) at k & 0.8 /µm for these MI-induced
oscillations. This is close to the decay rate Γ̃k ≈ 0.22(4)
in samples without an MI period (∆τ = 0), suggesting
that the short MI dynamics does not heat up the sample
significantly to increase the phonon dissipation rate.

We now focus on identifying a key signature of non-
classical correlations. To search for entanglement in the
final phonon basis, we evaluate the squeezing parameter
Ck = εk/ε(k, gf ) at g = gf and plot the rescaled phonon

spectra S̃(k, τ̃) = S(k, τ̃)/Ck, as shown in Figs. 4(a-c)
[35]. In this basis, the phonon spectra at momenta k &
1.5/µm can be observed to oscillate above and below the
rescaled quantum limit S̃ = 1, showing signatures of two-
mode squeezing and anti-squeezing as time evolves. The
first minimum S̃min identified at various momenta k is
plotted in Fig. 4(d), in which we find that S̃min violates
the inequality Eq. (1) in a wider range for the MI sample
with ∆τ ≈ 1 ms than it does for the samples without
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FIG. 4. Testing two-mode squeezing and quantum entan-
glement in the phonon basis. (a-c) Rescaled phonon spec-

trum S̃(k, τ̃) for k ≈ (1.3, 1.6, 1.8, 2.1, 2.2, 2.4)/µm (filled cir-
cles from bright to dark), evaluated using data as shown in
Figs. 3(b-d). Solid curves are guides to the eye. (d) First

minima S̃min in the phonon spectra of various wavenumber k,
at ∆τ ≈ 0 ms (filled circles), 1 ms (squares), and 2 ms (trian-
gles), respectively. In (a-d), horizontal dashed lines mark the
quantum limit, below which Eq. (1) is violated. Error bars
include systematic and statistical errors. (e) Mean phonon
population N̄k (filled symbols) and pair-correlation ampli-
tude ∆Nk (open symbols) extracted using the first minima
and maxima identified in (a, circles), (b, squares), and (c,
triangles), respectively. Blue (red) shaded areas mark the re-
gion where ∆Nk > N̄k (∆Nk < N̄k). Error bars represent
statistical errors.

MI or with longer ∆τ . The strongest violation is in the
range of 2.1/µm. k . 2.2/µm and has average S̃min ≈
0.77(7) < 1, compared to S̃min ≈ 0.84(8) without MI
and S̃min ≈ 0.91(5) for ∆τ ≈ 2 ms. Lastly, we comment
that the initial violation of inequality for samples without
MI at τ̃ ≈ 0 is also clear. However, fewer modes show
squeezing when the phonon spectra return back to the
first minima S̃min.

To further interpret our result, we extract the mean
phonon number N̄k and the pair-correlation amplitude
∆Nk by using the first maximum S̃max and minimum
S̃min identified in S̃(k, τ̃) at each k in Figs. 4(a-c),

N̄k ≈
S̃max + S̃min

2
− 1

∆Nk ≈
S̃max − S̃min

2
. (3)

As shown in Fig. 4(e), both N̄k and ∆Nk have compa-
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rably increased due to pair-production in MI samples of
∆τ 6= 0. Quantum entanglement appears to better pre-
vail for ∆τ ≈ 1 ms and at k & 1.5/µm, where ∆Nk & N̄k.
This may be understood as any excessive incoherent pop-
ulation N̄k−∆Nk > 0 in our samples can be due partially
to quasiparticle dissipation during the quench and par-
tially to incoherent (thermal) phonons present in the ini-
tial state. The latter are better suppressed at k > 1.5/µm
as ε(k, gi) > kBT ≈ ~× 1 kHz.

In summary, we observe pair-correlation signal and
non-classical correlation in atomic quantum gases
quenched to an attractive interaction, with two-mode
squeezing S̃min ≈ 0.8 < 1 below the quantum limit. Fur-
ther reduction of initial incoherent phonon populations
or of decoherence during pair-production processes may
increase the non-classical signal in future experiments.
Reaching S̃ < 0.5 could open up applications requir-
ing EinsteinPodolskyRosen entangled quasiparticle pairs
[36–40]. Our method may be extended to analyze en-
tanglement distribution between non-causal regions be-
fore the interaction quench. Furthermore, in analogy to
the discussion in Ref. [41], extending our analyses of
two-mode quadrature variance to skewness [42] and other
higher-order correlation terms may provide necessary ob-
servables for probing entanglement entropy and transport
in a quantum gas.
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Entanglement between two spatially separated atomic
modes, Science 360, 416 (2018).

[41] I. Klich and L. Levitov, Quantum noise as an entangle-
ment meter, Physical Review Letters 102, 100502 (2009).

[42] J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bou-
choule, Probing three-body correlations in a quantum
gas using the measurement of the third moment of den-
sity fluctuations, Physical Review Letters 105, 230402
(2010).


