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When multiple quantum emitters radiate, their emission rate may be enhanced or suppressed 

due to collective interference in a process known as super- or subradiance. Such processes 

are well-known to occur also in light emission from free electrons, known as coherent 

cathodoluminescence. Unlike atomic systems, free-electrons have an unbounded energy 

spectrum, and thus all their emission mechanisms rely on electron recoil, in addition to the 

classical properties of the dielectric medium. To date, all experimental and theoretical studies 

of super- and subradiance from free electrons assumed only classical correlations between 

particles. However, dependence on quantum correlations, such as entanglement between 

free electrons, has not been studied. Recent advances in coherent-shaping of free-electron 

wavefunctions motivate the investigation of such quantum regimes of super- and 

subradiance. In this Letter, we show how a pair of coincident path-entangled electrons can 

demonstrate either super- or subradiant light emission, depending on the two-particle 

wavefunction. By choosing different free-electron Bell-states, the spectrum and emission 

pattern of the light can be reshaped, in a manner that cannot be accounted for by a classical 

mixed state. We show these results for light emission in any optical medium, and discuss their 

generalization to many-body quantum states. Our findings suggest that light emission can be 

sensitive to the explicit quantum state of the emitting matter wave, and possibly serve as a 

non-destructive measurement scheme for measuring the quantum state of many-body 

systems.  

 

  



Collective effects in light emission, such as super (and sub-) radiance are of great importance 

for intense and coherent light sources. These effects cause the emission by 𝑁 particles to be 

enhanced (suppressed) relative to the emission by 𝑁 independent particles1,2, and have been 

studied thoroughly in the context of Dicke superradiance in systems of bound electrons3–8. 

Super- (and sub-) radiance also proves important in the classical domain, when energetic 

charged particles form bunches and superradiate9–13 or subradiate14–16. Such a process 

constitutes the basis for technologies such as klystrons, traveling-wave tubes, and free-

electron lasers10,11,17.  

In contrast to the super- and subradiance from bound-electrons, which necessitates a 

quantum theory, super- and subradiance from free electrons (and other charged particles) is 

well-described classically in all experimental regimes so far9–13,18. Even the quantum 

description of superradiance by multiple free charged particles19–23 essentially recovered the 

same predictions as the classical description. 

The possibility of strong quantum effects in super and subradiance by free-electrons, arising 

from quantum correlations such as entanglement (Fig. 1a-b), was until now left unexplored. 

This question is further motivated by recent breakthroughs in the coherent manipulation of 

free electrons24–29 (e.g., in electron microscopes) with strong lasers. The laser-driven quantum 

electrons provide attractive new prospects for controllable quantum sources of light31-42, due 

to their continuum of energy states. This difference from bound-electron systems has special 

importance for creating sources in hard-to-access wavelength regimes12,41–46, while enjoying 

ultrafast timescales and nanometric spatial resolution. Most of these new predictions, 

however, consider only a single quantum electron interacting with quantum light, leaving out 

potentially rich opportunities for coherent control of photon emission, enabled by several 

free-electrons. 

In this work, we show how quantum correlations between multiple electrons can shape light 

emission by creating a new effect of quantum super- and sub-radiance. To show this, we 

develop the general quantum theory of spontaneous emission by a correlated system of free 

charged particles (detailed in the Supplementary Material), and employ it for the example of 

Cherenkov radiation by free electrons. For the important case in which the particles are free 

electrons, the process of light emission is also called coherent cathodoluminescence47 (CCL). 

We adopt the acronym CCL below, while keeping in mind that the predictions apply to other 

charged particles. 

To exemplify the general concept of quantum super- and subradiance for multiparticle CCL, 

we present results for the concrete case of light emission by two path-entangled free 

electrons. We consider each electron as having a delocalized wavepacket larger than the 

emitted wavelength. This case naively corresponds to incoherent emission48 in both the 

classical and the quantum descriptions. Surprisingly, we find that the emitted light intensity 

directly depends on the quantum phase angle of the two-electron Bell-state, and that both 

super- and subradiant light emission can be obtained for different quantum states. This 

phenomenon has no classical or semiclassical analogue, and is experimentally distinct from 

emission by free-electron bunches. Our findings have implications on the emerging field of 

free-electron quantum optics30,33,38, suggesting that photoemission can be used as a probe of 

multi-particle emitters48. Compared to recent work on light emission from quantum free 

electrons, our work is the only one to consider many-body ensembles and predict novel 

quantum effects. 



 

 

Fig. 1: Super- and subradiance from quantum-correlated free charged particles. (a) A quantum current operator 

�̂�(𝐫, 𝑡), associated with the emission of light quanta by multiple charged particles in a general optical environment, 

is used to find the collective (super- or subradiant) emission by calculating current-current correlations. (b) 

Exemplifying the general concept, when a pair of quantum-correlated particles emits radiation, the quantum 

interference between the transition amplitudes can lead to enhancement or suppression of the emitted light 

intensity. (c) This system can be realized by two free-electrons of opposite spins with kinetic energy levels spaced 

by 𝛿𝐸, prepared in an entangled state (left). Then, upon emission of a single photon, the 2-electron state recoils 

by ℏ𝜔 = 𝛿𝐸. Overlap between recoiled final states results in quantum interference leading to super- and 

subradiance. 

CCL by free charged particles. To illustrate our findings, we consider CCL by free electrons in 

a general optical environment described by a dyadic Green function49,50 𝐆(𝐫, 𝐫′, 𝜔). The initial 

state of the electron-radiation field is described by a density matrix 𝛒i = 𝛒e⊗ |0⟩⟨0|, where 

𝛒e denotes the initial electron density matrix and |0⟩⟨0| denotes the vacuum state of the 

radiation. The interaction is governed by the Dirac Hamiltonian: 𝐻int = 𝑒𝑐𝛂 ⋅ 𝐀, where 𝑒 is the 

electron charge, 𝑐 is the speed of light, 𝜶𝑖 = 𝜸0𝜸𝑖 are the Dirac matrices, and 𝐀 is the 

electromagnetic vector potential operator. We use first-order time-dependent perturbation 

theory to find the final quantum state of the system, 𝛒f.  

In CCL experiments, only the radiation field is measured and so we calculate its reduced 

density matrix, 𝛒ph = tre{𝛒f}, with tre denoting the partial trace over the (multi-)electron 

state. We calculate the power spectrum of the emitted light measured in the far field at a 

distance 𝑟 from the source and at direction �̂� (see Supplementary Material Sections S1-S3 for 

derivation): 

𝑑2𝑃

𝑑Ω𝑑𝜔
= 2𝑟2𝜖0𝑐𝜔

2𝜇0
2∫𝑑3𝐑𝑑3𝐑′ Tr𝐆†(𝑟�̂�, 𝐑′, 𝜔)𝐆(𝑟�̂�, 𝐑,𝜔)⟨𝐣†(𝐑′, 𝜔)𝐣(𝐑,𝜔)⟩

e
 (1) 

 

In Eq. 1, Tr denotes a matrix trace Tr 𝐄†𝐄 = ∑ 𝐸𝛼
†𝐸𝛼𝛼  over the electric field polarization. The 

quantity ⟨𝐣†(𝐫′, 𝜔′)𝐣(𝐫,𝜔)⟩
e
= tr{𝛒e𝐣

†𝐣} is the expectation value, with respect to the 

electronic initial state, of the correlations in the current density operator 𝐣(𝐫, 𝑡) = 𝑒𝑐�̂�†𝛂�̂�, 



where �̂�(𝐫, 𝑡) [defined in Eq. (S2.10)] is the electron spinor field operator described in second 

quantization.  

We now make the two following simplifications: (i) the particles propagate as wavepackets 

with a well-defined carrier velocity 𝐯0 (equivalent to the paraxial approximation, where the 

electron dispersion is linearized); (ii) photon-induced recoil associated with the momentum 

ℏ𝑞 are much smaller than electron momenta 𝑝e (under this approximation, recoil is assumed 

small but is not neglected). These assumptions are applicable to a vast number of effects, 

including all cases in which the emitter is relativistic and for all free-electron sources in the 

microwave, radio frequency and optical ranges42,44,47,51,52. The current correlations appearing 

in Eq. 1 can then be written as (see Supplementary Material Section S2 for derivation) 

⟨𝐣(𝐱′)𝐣(𝐱)⟩ = 𝑒2𝐯0𝐯0 [𝐺e
(2)(𝐱′, 𝐱) + 𝛿(𝐱 − 𝐱′)𝐺e

(1)(𝐱, 𝐱)],   (2) 

where 𝐱 = 𝐫 − 𝐯0𝑡 and 𝐱′ = 𝐫′ − 𝐯0𝑡
′. In Eq. (2), we define the first- and second-order 

correlation functions of the emitter 𝐺e
(1)(𝐱′, 𝐱) = ∑ tr{𝛒e�̂�𝜎

†(𝐱′)�̂�𝜎(𝐱)}𝜎  and 𝐺e
(2)(𝐱′, 𝐱) =

∑ ∑ tr{𝛒e�̂�𝜎′
† (𝐱′)�̂�𝜎

†(𝐱)�̂�𝜎(𝐱)�̂�𝜎′(𝐱
′)}𝜎𝜎′ , respectively, where �̂�𝜎(𝐱) are position-space 

annihilation operators corresponding to the particle spin components 𝜎 =↑, ↓ (under our 

approximations, these scalar operators are decoupled from their vector spinors, see Eq. 

(S2.15)). Eq. 2 is valid for particles with both fermionic and bosonic statistics. The current 

correlation of Eq. (2) comprises two terms: a pair correlation term proportional to 𝐺e
(2)(𝐱′, 𝐱), 

giving rise to coherent radiation when substituted into Eq. (1); and a term proportional to the 

probability density 𝐺e
(1)(𝐱, 𝐱), contributing incoherent radiation48. 

Quantum super- and subradiance by free charged particles. The quantum interference of the 

multiparticle free-electron wavefunction with itself can leave an imprint on the 

spontaneously-emitted light. Such quantum features are sensitive to the specific quantum 

state the system was prepared in and cannot be accounted for by classical electromagnetism. 

Here, we shall consider the enhancement (suppression) of radiation emission above (below) 

the rate of independent free electrons as super- (sub-) radiance, as commonly employed in 

the literature for CCL53,54, although other definitions exist for atomic systems (mainly 

categorized by the initial pumping conditions)55. The quantum interference phenomenon 

considered here originates from the second-order correlation between the emitting particles, 

𝐺e
(2)(𝐱, 𝐱′) in Eq. (2), which determines the emission pattern in Eq. (1). We consider the 

decomposition  

𝐺e
(2)(𝐱, 𝐱′) = 𝐺e

(1)(𝐱, 𝐱)𝐺e
(1)(𝐱′, 𝐱′)𝑔e

(2)(𝐱 − 𝐱′).   (3) 

where 𝑔e
(2)(𝐱 − 𝐱′) now stands for the normalized second-order correlation function of the 

emitting particles. It is worth mentioning that from Eqs. (1-3), the known semiclassical cases 

of superradiance could be recovered. For example, radiation from subwavelength-bunched 

beams9, regularly-spaced bunches (as in the bunching effect in FELs17), and sub-shot noise 

resulting from Coulomb interactions14–16. In such cases, the spatio-temporal shape of the 

multiparticle wavefunction determines the power spectrum. 

In the following, however, we shall focus on the case where 𝑔e
(2)(𝐱 − 𝐱′) is determined by 

quantum correlations rather than classical correlations.  As a proof-of-concept, we consider a 

two-electron state prepared from two identical, delocalized wavepackets 𝜑(𝐱) having two 



possible carrier momenta: 𝐤, 𝐤′ and different spins ↑, ↓, as can be created in a Stern–Gerlach-

type experiment (or other techniques of spin polarization56). Note that the spin degree of 

freedom, while usually insignificant for first-order spontaneous emission, becomes important 

here for the preparation of an entangled free-electron state. The electron pair traverses 

coincidentally through a general optical medium and spontaneously emits CCL radiation, as 

illustrated in Fig. (2a-b). We assume that the wavefunction momentum uncertainty around 

𝐤, 𝐤′ is smaller than the difference |𝐤 − 𝐤′|, ensuring that the two states initially do not 

overlap in momentum space.  

Further, we assume that spatio-temporal walk-off (or group velocity mismatch) between the 

two wavepackets is negligible. This can be readily assured for electrons whenever 𝐤 − 𝐤′ is of 

the order of optical momenta, and the wavefunction spatial extent in the respective 

dimension along 𝐤 − 𝐤′ is larger than the optical wavelength. Under these assumptions, it can 

be easily shown [see Eq. (S4.1-2)] that the two wavepackets occupied by each of the electrons 

are 𝑒+𝑖(𝚫𝐤/2)⋅𝐱𝜑(𝐱) and 𝑒−𝑖(𝚫𝐤/2)⋅𝐱𝜑(𝐱), where 𝜑(𝐱) has a carrier wavenumber 𝐤0 = (𝐤 +

𝐤′)/2, and where 𝚫𝐤 =  𝐤 − 𝐤′.  

The key idea is to allow one electron with wavevector 𝐤 to emit a photon with wavevector 𝐪, 

and get recoiled to a new wavefunction centered near 𝐤′. We want this new recoiled 

wavefunction to overlap with the wavefunction of a second electron already occupying 𝐤′ 

(assuming the two electrons have opposite spins). Quantum interference between two 

equivalent photon emission paths then happens if we interchange the two electrons (see Fig. 

1).  

We illustrate the emission from classically-correlated electrons in Fig. 2a and quantum-

correlated electrons in Fig. 2b. For the classical case, we consider probabilistic correlations. If 

one electron is found in state 𝐤 ↑, it is correlated with the other to be found in 𝐤′ ↓, and vice 

versa. This corresponds to the mixed state 𝜌e = 1/2|𝐤↑𝐤↓
′ ⟩⟨𝐤↑𝐤↓

′ | + 1/2|𝐤↓𝐤↑
′ ⟩⟨𝐤↓𝐤↑

′ |. From 

Eqs. (1-3), one may calculate the power spectrum 𝑑2𝑃/𝑑Ω𝑑𝜔 = ℏ𝜔Γ(�̂�,𝜔) of the classically-

correlated state, where Γ(�̂�, 𝜔) is the emission rate per unit time per unit frequency. For the 

classical case, 𝐺e
(1) = 2|𝜑(𝐱)|2, and 𝑔e

(2)(𝐱 − 𝐱′) = 1/2. We denote the resulting classical 

emission rate by Γc(�̂�, 𝜔) and the single-particle emission by Γ0. We find an incoherent 

emission, i.e. Γc = 𝑁Γ0 (with 𝑁 = 2 in our case), for wavelengths smaller than the extent of 

the wavepacket |𝜑(𝐱)|2. We also find the expected classical superradiance, i.e. Γc = 𝑁
2Γ0, 

for wavelengths larger than the extent of the wavepacket. See Fig. 2d for an example. 

In the quantum case, we may consider a fundamentally different correlation, e.g., an 

entanglement between an electron pair prepared in a path-entangled Bell-state: |Ψ⟩ =

(|𝐤↑; 𝐤↓
′ ⟩ + 𝑒𝑖𝜁|𝐤↓; 𝐤↑

′ ⟩)/√2, where 𝜁 is a phase angle. It is readily shown that in this case, we 

have again 𝐺e
(1) = 2|𝜑(𝐱)|2, whereas 

𝑔e
(2)(𝐱 − 𝐱′) =

1

2
(1 − cos 𝜁 cos[Δ𝐤 ⋅ (𝐱 − 𝐱′)]).  (4) 

Unlike the classical case of 𝑔e
(2) = 1/2, the quantum case in Eq. (4) depends explicitly on the 

quantum phase angle 𝜁 of the electron Bell-state, and on the wavevector difference Δ𝐤 = 𝐤 −

𝐤′. Calculating the quantum emission rate Γq from Eqs. (1-3) and (4) gives the general result  

Γq = Γc − cos 𝜁 ΓΔ𝐤,  (5) 



where ΓΔ𝐤 is a term resulting from the momentum difference Δ𝐤 of the two modes 𝐤 and 𝐤′. 

This term can influence the radiated spectrum by shifting the long wavelength superradiance 

peak in momentum space to shorter wavelengths (Fig. 2d). This property, together with the 

control over the quantum phase angle 𝜁, allows for selective enhancement or suppression of 

the emission rate at wavelengths that exhibit no super- or subradiance in the classical 

picture: i.e., we find a peak (or dip) in the emission intensity that cannot be explained by 

spatial modulation (bunching) of the density cloud 𝐺e
(1)
= 2|𝜑(𝐱)|2 (the two chosen 

wavepacket modes 𝑒+𝑖(𝚫𝐤/2)⋅𝐱𝜑(𝐱) and 𝑒−𝑖(𝚫𝐤/2)⋅𝐱𝜑(𝐱) differ only by phase and are not 

modulated in amplitude). Therefore, Eq. (5) introduces a quantum radiation effect that is 

sensitive to the quantum correlation between electrons and shows how they induce strong 

enhancement or suppression of spontaneous emission.  

Note that the phase dependent term, cos 𝜁 of Eq. (5) – the quantum interference in 

superradiance and subradiance – happens independently of any temporal delay effects 

between electrons, as previously analyzed in the literature19,20. In fact, the radiation 

phenomenon we described does not rely on the localization of the wavefunction to 

dimensions smaller than the emitted wavelengths, nor on temporal separation between 

electrons (see Supplementary Material Section S5).  

 

Figure 2: Shaping light using quantum correlations. (a-b) Illustration of coherent cathodoluminescence from two 

correlated particles. In (a), a pair of coincident electrons with different momenta 𝐤, 𝐤′ and spins ↑↓ are prepared 

in a classically correlated (mixed) state and interact with an optical environment – giving classical emission. In (b), 

the electrons are instead prepared in a path-entangled Bell-state, and the emission pattern is modified, depending 

explicitly on the phase angle ζ of the electrons’ quantum state. (c-d) Quantum shaping of Cherenkov radiation by 

two-electron Bell-states. (c) The rate of Cherenkov photon emission per unit time per unit frequency Γ, normalized 

by the single-particle rate Γ0 = 𝛼𝛽 sin
2 𝜃𝑐 /2𝜋. The normalized rate Γ/Γ0 is calculated along the Cherenkov cone 



and plotted as a function of the azimuthal angle 𝜙 (see inset). For different phases ζ of the electron Bell-state, the 

radiation pattern is no longer azimuthally symmetric on the cone as in the classical case (red full line), and is either 

enhanced (ζ = 𝜋, green dotted line) or suppressed (ζ = 0, blue dashed-dotted line). The wavepackets that 

constitute the two-electron Bell-state differ by a transverse wavevector Δ𝐤 = sin 𝜃c 𝑛𝜔/𝑐�̂� = 𝑞𝑇�̂�, chosen to 

match the transverse photon momentum 𝑞𝑇. (d) Normalized emission rate Γ/Γ0 vs. normalized frequency in units 

of 𝜔0 = 𝑣0Δ𝑘, where now Δ𝐤 is chosen parallel to �̂�. Near 𝜔 = 𝑣0Δ𝑘 = 𝜔0, a resonance appears. The magnitude 

of the spectral feature is governed by the phase angle ζ of the Bell-state, giving quantum super- and subradiance. 

Electron velocity 𝑣0 = 0.7𝑐, refractive index 𝑛 = 2, emitted photon energy ℏω = 2 eV, wavefunction dimensions 

in (c) Δ𝑟𝑇 = 200 nm and Δ𝑧 = 1 nm and in (d) Δ𝑟𝑇 = 10 nm and Δ𝑧 = 500 nm, for the transverse and longitudinal 

sizes, respectively. 

Cherenkov radiation. As an example of our findings, we consider Cherenkov radiation (CR), 

observed when a charged particle of velocity 𝑣 = 𝛽𝑐 surpasses the phase velocity of light in a 

homogeneous dielectric medium of refractive index 𝑛 = 𝑛(𝜔). CR is known to have a broad 

spectrum, and is characterized by a cone-shaped emission pattern, where the aperture of the 

cone is determined by the Cherenkov angle 𝜃C = arccos(1/𝑛𝛽). For the two-electron cases 

discussed above, the CR emission rate is found using Eqs. (1-5), yielding 

Γ(�̂�, 𝜔) =
𝛼𝛽

2𝜋
sin2 𝜃 𝛿 (cos 𝜃 −

1

𝑛𝛽
)

{
 

 
2 + 2 |∫𝑑3𝐱𝑒

−𝑖
𝑛𝜔
𝑐
�̂�⋅𝐱|𝜑(𝐱)|2|

2

⏟                    
classical

− cos 𝜁 [|∫𝑑3𝐱𝑒
−𝑖(

𝑛𝜔
𝑐
�̂�−Δ𝐤)⋅𝐱|𝜑(𝐱)|2|

2

+ Δ𝐤 ↔ −Δ𝐤]
⏟                                

quantum }
 

 
, 

(6) 

In Eq. (6), note that the first two terms correspond to the classically-correlated state (giving 

the classical emission rate Γc), while the third term appears only for the quantum-correlated 

electron Bell-state of phase angle 𝜁, with ΓΔ𝐤 proportional to the shifted Fourier transform of 

the wavepacket. The shifted spectrum, together with the phase angle 𝜁, can be used to tailor 

quantum super- and subradiant CR. 

Fig. 2c-d illustrates this example using two choices of Δ𝐤: matching the transverse momentum 

(Fig. 2c) or the longitudinal momentum (Fig. 2d) of the emitted CR photon in a specific optical 

wavelength. For the quantum-correlated case, this matching results in a shaped emission 

pattern and spectrum at the chosen wavelength. The quantum phase angle 𝜁 controls, in the 

transverse case (Fig. 2c), the quantum suppression and enhancement of the radiation with 

respect to the classical emission rate in opposite angles on the Cherenkov cone. Similarly, in 

the longitudinal case (Fig. 2d) the phase 𝜁 induces super- and subradiance at the chosen 

resonant frequency 𝜔0 that is matched to the momentum difference via 𝜔0 = 𝑣0Δ𝑘. 

It is noteworthy to compare this result to Dicke superradiance1,2 in systems of atomic emitters. 

For example, consider the super- and subradiance of two stationary atoms. The entanglement 

of the form (|𝑒𝑔⟩ + 𝑒𝑖𝜁|𝑔𝑒⟩)/√2, where 𝑒 (𝑔) stands for an excited (ground) state of the 

atom, can lead to super- and subradiance57. Different regimes of super- and subradiance in 

the presence of atomic center-of-mass motions were also recently investigated58,59, showing 

that atomic recoil tends to diminish collective emission (i.e., beyond the Lamb-Dicke 

regime58,59). However, recoil plays a different role in atomic and free-electron systems. In the 

known regimes of atomic superradiance, the internal electronic transition is what mainly 

determines the properties of the emitted light (e.g. its frequency and polarization), with the 

atomic recoil being a secondary effect. For free-electrons, the recoil is the main emission 



mechanism, defining (together with the properties of the dielectric medium and the initial 

electron energy) the emitted wavelength through energy conservation of the free-electron 

transition. Surprisingly, the recoil in the free-electron system is found to be the key ingredient 

for quantum super- and subradiance.  

Generalization to 𝑵 particles. So far we considered two emitters only, but our results can be 

readily applied to the case of many-body states of free charged particles, by the choice of 

appropriate wavefunctions of the form 

|Ψ⟩ = ∑ 𝑐{𝜎1𝜎2…𝜎𝑁}|𝜑1𝜎1, 𝜑2𝜎2, … , 𝜑𝑁𝜎𝑁⟩

{𝜎1𝜎2…𝜎𝑁}

, (7) 

where 𝜎𝑖 is the spin of particle 𝑖 occupying the wavepacket 𝜑𝑖(𝐫). Even for the much-higher 

dimensionality of the wavefunction, the same current correlations of Eq. 2 enable deriving 

observables as above. When the number of particles grows, entanglement features and Pauli 

exclusion60 play an increasingly important role in the shaping of radiation patterns. Looking 

forward, it is extremely interesting to find which many-body states create macroscopic states 

of light that widely differ from conventional types of light emission and from classical super- 

and subradiance. Such findings could serve as concrete evidence for the breakdown of the 

correspondence principle61 between Maxwell's equations and quantum electrodynamics. 

Experimental considerations. Path entangled free electron states were observed in double 

photoionization from H2 molecules62,63. Other directions for entangled electrons have been 

proposed by exploiting the interactions of free electrons with cavity photons33,64. The phase 

angle of these states could be controlled using path differences65 or through interaction with 

an optical field28. In addition, spectral modulation of two (or more) entangled electron states 

can be implemented using photon-induced electron microscopy (PINEM) techniques26.  

We emphasize that the quantum interference exists even in the complete absence of classical 

interference effects, such as those related to inducing a space charge modulation or time 

delay between the two electrons. This point is shown in the Supplementary Material Section 

S5, for any wavepacket shape and for any optical medium. Consequently, our entangled-

driven super- and subradiance can enable a clear experimental signature of quantum super- 

and subradiance from entangled particles. 

We investigate the decoherence of the two-electron quantum state following the emission of 

an optical excitation in an arbitrary environment (Supplemental Material Section S6). We find 

that although the final state becomes partially mixed, quantum correlations persist in the form 

of recoiled copies of the initial quantum state (see Eqs. S6.4a-b). Excitations with small recoil 

relative to the electronic momentum uncertainty lead to very small decoherence (Eq. S6.6). 

In this context, optical setups such as cavities24,25 or aloof geometry experiments66 can be 

employed to completely avoid decoherence from sample excitations other than the desired 

emitted photons. Finally, we show that the interaction between the optical environment and 

the two-electron wavefunction can be employed to create the necessary two-electron 

entanglement33,64 that we consider in this work; the entanglement can be created by virtue of 

post-selecting an emitted photon (see Eq. S6.9 and Fig. S1).    

In summary, we unveiled the role of quantum correlations in enabling a novel form of super- 

and subradiance from several free charged particles. This effect was previously analyzed only 

in the presence of classical correlations. Harnessing the quantum interference between two 



path-entangled electrons, we showed how the intensity pattern and spectrum of CCL, and 

generally of any emission process from charged particles, can be selectively enhanced or 

suppressed, depending on the quantum state of the particles. The center-of-mass recoil plays 

an essential role in such processes, in contrast to what is currently known in atomic quantum 

optics. Therefore, we expect this new insight to stimulate the discovery of novel 

superradiance regimes in other areas of quantum optics, and particularly in atomic physics.  

Our findings pave the way towards novel methods for ultrafast quantum coherent control of 

light emission using quantum correlated wavefunctions on the attosecond timescale26, 

complementing existing schemes of controlling photons by atomic emitters67. The unbound 

energy spectrum of free particles enables a larger volume of quantum information to be 

carried by them68. By considering super- and subradiance by entangled free-electron energy 

ladders69, multiple optical harmonics can be enhanced or suppressed. The emitted photons 

can take the form of a quantum frequency comb70, enabling a large bandwidth of quantum 

communication.  

Looking at the bigger picture, our results suggest that any form of wave emission by free 

particles could serve for passive and non-destructive quantum measurement71 of the 

entanglement between the emitting particles. The prospects of such a detection scheme are 

due to the detection not requiring the absorption of the particles in a detector, allowing 

further use of the quantum system after the measurement. 

The predictions can be generalized to any type of correlated free particles interacting with any 

type of wave quanta, for example: Bose-Einstein condensate systems interacting with 

superfluid Bogoliubov excitations72, spontaneous parametric downconversion from 

macroscopic quantum states of light73, and in condensed matter, excitations of polaritonic 

quasiparticles51 by both free electrons47 and bound conduction electrons74.  

We first presented the results that led to this work in the CLEO conference in May 202075.  
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