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By examining the entropy production in fully kinetic simulations of collisional plasmas, it is shown
that the transition from collisional, Sweet-Parker reconnection to collisionless, Hall reconnection may
be viewed as a thermodynamic phase transition. The phase transition occurs when the reconnection
electric field satisfies E = ED

√
me/mi, where me/mi is electron-to-ion mass ratio and ED is the

Dreicer electric field. This condition applies for all mi/me, including mi/me = 1 where the Hall
regime vanishes and a direct phase transition from the collisional to the kinetic regime occurs. In
the limit me/mi → 0, this condition is equivalent to there being a critical electron temperature,
Te ≈ miΩ

2
i δ

2 where Ωi is ion cyclotron frequency and δ is the current sheet half-thickness. The
heat capacity of the current sheet changes discontinuously across the phase transition, and a critical
power law is identified in an effective heat capacity. A model for the time-dependent evolution of
an isolated current sheet in the collisional regime is derived.

Magnetic reconnection is a fundamental plasma pro-
cess responsible for rapidly releasing stored magnetic en-
ergy and changing the magnetic topology. Reconnec-
tion occurs in nearly all magnetized plasma environments
from highly collisional, to nearly collisionless kinetic sys-
tems. A wide variety of physical effects and instabilities
influence the reconnection process, such as the Hall effect
[1], electron kinetic effects [2, 3], and plasmoid instabili-
ties [4–6], many of which were empirically organized into
a reconnection phase diagram in analog with a thermo-
dynamic phase diagram [7].

While the reconnection phase diagram is a success-
ful tool for organizing parameter space, the question of
whether there truly exist phase transitions between dif-
ferent regimes has not been rigorously addressed. In
reconnection, the simplest and most well-established
regimes are the slow, collisional [8–11] and fast, colli-
sionless regimes [1, 12, 13] with a single two-dimensional
(2D) X-line. This Letter focuses solely on the fundamen-
tal physics of the transition between these two regimes.

Previous results for anti-parallel reconnection have
suggested that the transition occurs when δ = di where
δ is the current sheet half-thickness, di ≡ c/ωpi is the
ion inertial length, and ωpi is the ion plasma frequency
[14, 15]. The importance of di was suggested based on
a scaling analysis of the generalized Ohm’s law [16], the
presence of fast, dispersive waves [17], and abundant em-
pirical evidence that di is a relevant length scale within
the collisionless regime [18]. However, there is no fully
self-consistent, first-principles theory that describes the
transition or justifies the exact equality δ = di.

To-date, the most comprehensive model of the transi-
tion is the catastrophe model of Cassak et al. [14] who
examined it in an isothermal two-fluid system. An evo-
lution equation for the current sheet was developed and
a bifurcation from the collisional to the Hall regimes was
identified [19]. This model has hysteresis and it was ar-
gued that phase diagrams must therefore include history
effects [20]. Hysteresis was observed in a two-fluid simula-
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FIG. 1. (a) Reconnection rate and (b) δ/di and T̂ as a func-
tion of time. (c-e) Example out-of-plane current density in
the (c) collisional, (d) Hall, and (e) kinetic regimes.

tion by artificially modifying the resistivity [14], as well as
in a Hall-MHD simulation due to the self-consistent inter-
play between plasmoid instability and Hall physics [21].
To the authors’ knowledge, similar effects have not been
observed in fully kinetic simulations, suggesting that the
underlying physics of the transition may differ from sim-
plified fluid models. Within kinetic simulations, the tran-
sition has been observed in both 2D and 3D and for both
electron-positron and electron-ion plasmas [22–25], and
dynamic thinning of Sweet-Parker current sheets due the
Ohmic heating is known to be an important effect [24].

Here, these earlier results are extended by examin-
ing fully kinetic particle-in-cell (PIC) simulations that
self-consistently evolve from an initial collisional equilib-
rium, through a Hall regime where electrons and ions
are decoupled, but classical resistivity is the dominant
non-ideal effect, and finally into a collisionless, kinetic
regime. The evolution of the entropy is examined, and
a thermodynamic phase transition is shown to exist be-
tween the collisional and Hall regimes. For finite mi/me,
electron gyroviscosity cannot be neglected, and the phase
transition occurs when the normalized reconnection elec-
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tric field satisfies Ê ≡ E
√
mi/me/ED = 1, where

ED = mevtheνei/e is the Dreicer electric field, vthe is
electron thermal speed, and νei is electron-ion collision
frequency. This condition applies for all mi/me, includ-
ing mi/me = 1 where the Hall regime vanishes and a
direct phase transition from the collisional to the kinetic
regime occurs. In the limit me/mi → 0, and assum-
ing a Sweet-Parker equilibrium, this condition reduces
to ρs/δ = βe/2 ≈ 1 where ρs = Ω−1

i

√
Te/mi is the

ion sound radius, Ωi is the ion cyclotron frequency, and
βe = 8πneTe/B

2 is the ratio of electron pressure to mag-
netic field pressure. This condition may also be written
as T̂ ≡ Te/miΩ

2
i δ

2 ≈ 1.

To further understand the phase transition, both the
current sheet heat capacity, C, and an effective heat ca-
pacity, Ĉ, are introduced. C is discontinuous across the
phase transition corresponding to a change from isobaric
to isochoric heating, while Ĉ obeys a critical power law.
These results allow the time-dependent heating model of
Stanier et al. [24] to be extended into the “nonlinear”
regime where the phase transition occurs. It is shown
that in idealized and closed systems, Sweet-Parker cur-
rent sheets will always collapse down to kinetic scales
provided there is enough free magnetic energy, and the
collapse timescale only weakly depends on the initial cur-
rent sheet thickness.

The PIC code VPIC [26, 27], along with a Coulomb
collision algorithm [22, 28], is used to simulate recon-
nection in a resistive current sheet. The initial setup
is a 1D Harris equilibrium with B = B0 tanh(x/δ0)ẑ,
ne = ni = nb + n0sech2(x/δ0) and Ti = Te = miv

2
A0/4

where nb/n0 = 0.3, δ0 = 2di0, d2
i0 ≡ mic

2/4πn0e
2, and

v2
A0 = B2

0/4π(mi +me)n0. An initial, long-wavelength
perturbation is applied to seed reconnection. For the
case discussed in detail, mi/me = 40, ωpe,0/Ωe0 = 2, and
νei,0/Ωe0 ≈ 0.042, corresponding to an initial Lundquist
number S0 = 4πL0vA,up/η0c

2 ≈ 2200, where η0 is
the initial Spitzer resistivity, v2

A,up = (n0/nb)v
2
A0, and

L0 = Lz/2. The domain spans Lx × Lz = 50 × 100di0
and contains 790×1560 cells and 2.5×109 macroparticles.
Periodic boundary conditions are used along z, while par-
ticle reflecting and electrically conducting boundaries are
used along x. The time dependence of the reconnection
rate, R = cEy/BvA, and δ/di are shown in Fig. 1, along
with the out-of-plane current density at three represen-
tative times corresponding to the collisional, Hall, and
kinetic regimes.

Thermodynamic phase transitions often involve change
in the entropy or in properties derived from entropy and
several previous studies have examined entropy in PIC
simulations [29–32]. The differential (Boltzmann-Gibbs)
entropy for a species s is given by

Hs(t) ≡
∫
d3xhs(x, t), hs(x, t) ≡ −

∫
d3v fs ln fs

(1)
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FIG. 2. (a-c) Evolution of the electron and ion differential
entropy, He and Hi, relative to their initial value (a) as a

function of time, and reorganized by (b) δ/di and (c) T̂ . The
identified phase transition is shaded in (a) and shown with a
vertical line in (b-c). (d) Quantitative evaluation of proposed
transition criteria at the time of the collisional to Hall (kinetic
for mi/me = 1) phase transition. The dotted line in shows a

reference (mi/me)1/4 scaling.

where fs is the single-particle distribution function for
species s. Previous studies have used a plug-in integral
estimator where hs is integrated over a phase-space his-
togram [30, 32]. For the similar plug-in redistribution es-
timator, histograms are either slowly converging or incon-
sistent with significant bias [33], leading to non-negligible
systematic error. Here, hs is instead computed with the
Kozachenko-Leonenko (KL) estimator [34],

hs(x, t) = −wn [b(k)− b(n)] + w

n∑

i=1

ln

(
4πρ3

i,k

3kw

)
, (2)

where ρi,k is the distance in velocity space from
macroparticle i to its k-th nearest neighbor and b(x) =
ψ(x)−lnx where ψ(x) is the digamma function. The sum
extends over all n macroparticles in a given cell, each of
which has an identical statistical weight w. The standard
choice k = 1 is used here. KL is consistent and converges
as n−1/2 if f satisfies regularity conditions [35]. KL is
compared with a histogram estimator in the Supplemen-
tary Information [36].

The time evolution of Hs is shown in Fig. 2(a). En-
tropy monotonically increases in time and at a rate larger
than the numerical entropy gain in an equivalent colli-
sionless case. To lowest order, entropy is equally parti-
tioned between species since deviations from quasineu-
trality (ne = ni) and local thermal equilibrium (Te = Ti)
are small. To gain insight into the various regimes of re-
connection, the data can be reorganized using the current
sheet width rather than time as an independent coordi-
nate, Fig. 2 (b-c). Two measures are shown, di/δ, where
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δ is the half-width at half-max of Jy and di is evaluated

using the X-point density, and T̂ ≡ Te/miΩ
2
i δ

2 where Te
is evaluated at the X-point and B at 1δ upstream. The
former is motivated by significant heuristic and empiri-
cal evidence that di is involved in the transition physics,
while the latter is a dimensionless temperature measure.
In these simulations, T̂ predominantly changes due to
current sheet thinning and may be equivalently viewed
as a measure of δ.

An abrupt increase in Hs can be seen at δ ≈ di ≈ ρs.
This discontinuity in entropy could be interpreted as a
first-order thermodynamic phase transition where the net
change in entropy across the phase transition is due to a
latent heat. However, the phase transition requires finite
time, 100Ω−1

i0 . t . 200Ω−1
i0 , in order to occur. Dur-

ing this time, ongoing reconnection leads to a continuous
production of entropy unrelated to the phase transition
itself. As will be shown below, the phase transition ap-
pears to be continuous.

By finding the local minimum in |d(di/δ)/dHi|, the
point at which the collisional to Hall (kinetic for
mi/me = 1) phase transition occurs can be accurately de-
termined. Various proposed transition criteria are shown
as a function of mi/me and at the time of the phase tran-
sition in Fig. 2(d). The criteria δ = di and δ = ρi do not
hold for all mass ratios. Rather, it is empirically found
that the local criteria Ê ≡ E

√
mi/me/ED = 1 is an ac-

curate prediction of when the phase transition will occur
across all mi/me. This criteria was previously suggested
as an equivalent condition to δ = ρs since for largemi/me

it can be written as ρs/δSP = βe/2 or T̂ = (βe/2)2 where
δSP = L/

√
S and L and S are the time-dependent half-

length and Lundquist number of the current sheet [37].

For finite mi/me however, Ê differs from the large
mi/me limit due to electron gyroviscosity which is
present even in the collisional regime. Within the cur-
rent sheet, the electron pressure tensor, Pe, has finite off-
diagonal elements Pe,xy and Pe,yz due to electron motion
in the sheared magnetic field [38]. In the steady-state,
collisionless limit, ∂Pe,xy/∂x ≈ ∂Pe,yz/∂z resulting in an
electric field ENG ≡

√
2(me/e)vthedvez/dz [39]. How-

ever, these simulations are in a semi-collisional regime
where L & vthe/νei � δ. As a result, collisions suppress
Pe,yz, but do not affect Pe,xy, and the electric field is re-
duced by half from the collisionless limit, (∇·Pe)y/en ≈
ENG/2. This effect is discussed further in the Supple-
mentary Information [36]. Setting dvez/dz = vA/L gives
ENG/2ED = d2

e/
√

2δ2
SP and the condition

√
mi

me

ηJy + 1
2ENG

ED
=

2

βe

(
ρs
δ

+

√
me

2mi

ρ2
s

δ2
SP

)
= 1, (3)

where δ 6= δSP in general. For mi/me → ∞, the Sweet-
Parker limit is recovered, while for mi/me → 1, then
ρs/δSP ∼ (mi/me)

1/4. Eq. (3) is evaluated and shown
to hold within 12% in Fig. 2(d). Although this correction

vanishes in the large mi/me limit, it provides insight into
the underlying physics; the local electric field is responsi-
ble for the phase transition, not the current sheet geom-
etry. The remainder of this Letter assumes mi/me � 1

and nb/n0 � 1 which allows the simpler condition T̂ ≈ 1
to be used; up to factors of βe ∼ 1, this is equivalent to
the slow-to-fast transition criteria in Cassak et al. [14].

In the collisional regime, the rate of entropy production
can be estimated as dH/dt = (1/T )dQ/dt where Q is the
total heat generated by collisions. Locally, the heat gen-
eration is predominantly resistive dissipation, ηJ2, and so
dH/dt ≈ (4LδLy)(ηJ2/T ) ≈ 2NSPβ

−1νie (di/δ)
2

where
νie is the ion-electron collision frequency, NSP ≡ 4LδLyn
is the number of particles in the current sheet, and Ly
is the out-of-plane extent. Assuming that L and B
are constant and using the Spitzer resistivity scaling,
η ∼ T−3/2 gives the scaling S ∼ n−1/2T 3/2 ∼ β3/2n−2.
For Sweet-Parker current sheets it then follows that
NSP ∼ nδ2S1/2 ∼ β3/4δ2. Using the subscript 0 to de-
note initial condition values and taking β ≈ 1 leads to
the estimate

dH

dt
≈ 2NSP,0

(
δSP,0
δ0

)2(
T0

T

)3/2

τ−1
A0 , (4)

where τA ≡ L/vA is the Alfvén transit time.

Using the X-line temperature and assuming He ≈ Hi,
Eq. (4) is integrated to produce the black dashed line in
Fig. 2 (a-c) which agrees well with the simulation dur-
ing the collisional phase, t . 100Ω−1

i0 . In the collision-
less regimes, resistive production of entropy is reduced
and viscous heating and thermal mixing are additional
sources of entropy production; these effects will be de-
tailed further in a future manuscript.

To characterize the phase transition, the viscous elec-
tric fields at the X-point, φe and φi, are proposed as
phenomenological order parameters,

φs = −
〈
c(∇ ·Ps)y
qsnsB0VA,0

〉
(5)

where 〈·〉 denotes local spatiotemporal averaging in order
to reduce statistical noise. These order parameters are
shown as a function of T̂ in Fig. 3(a). They are equivalent

until the onset of kinetic effects (T̂ ∼ 6), which follows
from the momentum equations since ∇· (Pe +Pi) = 0 at
a symmetric, steady-state X-point. There is an onset at
T̂ = 1, corresponding to a transition from a disordered
phase (T̂ < 1) to an ordered phase (T̂ > 1).

The heat capacity of a system changes across a ther-
modynamic phase transition. Here, two heat capacities
are introduced, C ≡ TdH/dT and Ĉ ≡ T̂ dH/dT̂ , where
T is the X-point temperature and H = He +Hi. C and
Ĉ are shown in Fig. 3(b-c). C has a discontinuous change

at T̂ = 1 consistent with a continuous phase transition.
Ĉ is asymmetric and diverges at T̂ = 1. For T̂ < 1, there
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FIG. 3. Order parameters (a) and effective heat capacities

(b-c) for the reconnection phase transition as a function of T̂ .

Vertical lines are drawn at T̂ = 1 where a phase transition
occurs. Shading in (a) shows the region examined in (b-c),
dashed lines in (b) show different limits as discussed in the
text, and the black line in (c) is a power law fit with critical
exponent ᾱ = −3/5.

is a critical power law, Ĉ ∼ α0(1− T̂ )ᾱ, with the best fit
scaling exponent ᾱ = −3/5.

The two limits for C can be understood. If there is effi-
cient thermal transport across flux surfaces, then chang-
ing the X-point temperature requires heating the entire
plasma volume. This is an isochoric process due to the
fixed simulation volume, and C ≈ 3N where N =

∫
d3xn

is the total number of (real) particles per species. A fac-
tor of 2 has been included to account for both species.
This limit is consistent with the ordered-side. In the op-
posite limit, heat is confined within the current sheet and
outflow. This is an isobaric process since the reconnect-
ing magnetic field maintains a constant pressure within
the current sheet and C ≈ 5(NSP + Nout) where Nout
is the number of particles in the outflow. Since the ini-
tial equilibrium is a 1D current sheet, Nout,0 = 0, and
neglecting the contribution from inflowing particles gives
NSP,0 = NSP + Nout and C ≈ C0 ≡ 5NSP,0. This limit
is consistent with the disordered-side of Fig. 3(b).

As an example of the utility of C and Ĉ, a model for the
evolution of a resistive current sheet can be developed.
Writing Eq. (4) as dH/dt = H ′0T

−3/2, and using the

definition of C and Ĉ gives

dT̂

dt
=
H ′0
α0

T̂

(1− T̂ )ᾱ
T−3/2 (6)

dT

dt
=
H ′0
C0

T−1/2. (7)
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based on the approximate power law quoted in the text. The
vertical line in (b,c) shows the time estimated from Eq. (10).

The solution to these equations is

T =

(
3

2

H ′0
C0

t+ T
3/2
0

)2/3

(8)

T̂ = F−1

(
C0

α0
ln
T

T0

)
, (9)

where F (x) =
∫ x
T̂0
t−1(1−t)ᾱ dt. Collectively, these equa-

tions describe Ohmic heating and a collapse of the cur-
rent sheet, but differ from previous results which assumed
T − T0 ∼ t and did not include a critical power law [24].

Setting T̂ = 1 in Eq. (9) and using Eq. (8) and (4) leads
to an estimate for the collapse timescale

τ

τA,0
=

5

3

(
eγF (1) − 1

)( δ0
δSP,0

)2

(10)

where γ ≡ 3α0/2C0. For initially thick current sheets,

T̂0 � 1 and eγF (1) ≈ (e1/ᾱT̂0)−γ . In these simulations,
γ ≈ 1/11 and, assuming this is universal, τ ∼ 10τA,0
for Sweet-Parker current sheets that are initially 104ρs
thick, while for δ . 5ρs, then τ . τA,0. This model is
in good agreement with the simulation data, as shown
in Fig. 4, however further study on the parameter and
boundary condition dependence of γ is required before
applying these predictions to other systems.

Although derived here in terms of T̂ , an entirely equiv-
alent analysis can be done in terms of Ê. For the simu-
lations studied, an approximate power law, ÊdH/dÊ ≈
0.13C0(1−Ê)−1/2 is found and the resulting model agrees
well with all values of mi/me tested, representative ex-
amples of which are shown in Fig. 4(c).

In the isothermal limit, C → ∞, this model is iden-
tical to the slow-to-fast transition in the catastrophe
model of Cassak et al. [14] where the Sweet-Parker cur-
rent sheet is stable. This work extends the catastrophe
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model by including thermodynamic feedback which re-
sults in an instability of the Sweet-Parker current sheet
wherein Ohmic heating and thinning naturally drive the
system towards collisionless regimes. This study does not
address whether hysteresis is present in kinetic descrip-
tions, and this remains an open question.

Here, a closed system with a single isolated current
sheet was examined, however, in nature, current sheets
do not occur in isolation. Additional thermodynamic
effects such as thermal transport between the current
sheet and the external environment or thermal coupling
to neutrals [25] can modify these results. Furthermore,
macroscopic physics can be more influential than local
current sheet physics in determining current sheet sta-
bility and the long-term reconenction rate [40, 41], while
microscopic kinetic physics can strongly influence stabil-
ity in nearly collisionless systems.

Finally, in large collisional systems, fast reconnection is
thought to be driven by the plasmoid instability [4, 6, 22],
resulting in a fractal plasmoid chain that ends at either
a Sweet-Parker or kinetic current sheet [7]. Previous
estimates for the division between these two endpoints
do not include the resistive evolution described here
which will drive the terminating current sheet towards
kinetic scales. Similarly, systems with initial Lundquist
numbers below the critical value for plasmoid instabil-
ity (∼ 104) can become plasmoid unstable due to self-
consistent heating [5, 24]. Even without this modifica-
tion, plasmoid instability itself is regarded as a sepa-
rate reconnection phase, and future work will investigate
whether it may be similarly understood as a phase tran-
sition and whether critical behavior is present.

The data that support the findings of this study
are openly available in the Princeton University DataS-
pace [42].
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