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The no-hair theorem of general relativity states that isolated black holes are characterized by three
parameters: Mass, spin, and charge. In this Letter we consider Kerr black holes endowed with highly
magnetized plasma-filled magnetospheres. Using general relativistic kinetic plasma and resistive
magnetohydrodynamics simulations, we show that a dipole magnetic field on the event horizon
opens into a split-monopole and reconnects in a plasmoid-unstable current-sheet. The no-hair
theorem is satisfied, in the sense that all components of the stress-energy tensor decay exponentially
in time. We measure the decay time of magnetic flux on the event horizon for plasmoid-dominated
reconnection in collisionless and collisional plasma. The reconnecting magnetosphere should be a
powerful source of hard X-rays when the magnetic field is strong.

Black holes (BHs) formed by the collapse of a magne-
tized progenitor are born with magnetic fields penetrat-
ing the event horizon. There are several possible scenar-
ios, such as the spin-down of a rotationally supported
hyper-massive neutron star (NS) [1], or gravitational col-
lapse induced by the accretion of dark matter onto the
NS core [2]. BHs can also acquire magnetic flux later in
life by merging with a magnetized NS [3], or in accre-
tion flows. The fate of the magnetic flux (hair) on the
event horizon should be in accordance with the no-hair
theorem of general relativity.

The original no-hair conjecture [4] states that all sta-
tionary, asymptotically flat BH spacetimes should be
completely described by the mass, angular momentum,
and electric charge. It was later proved formally that
any field with zero rest mass and arbitrary integer spin
is radiated away on a light crossing timescale [5]. In par-
ticular, the multipole component l of a magnetic field in
vacuum decays as t−(2l+2). However, magnetized BHs
are unlikely to exist in vacuum. If a BH is formed by the
collapse of a magnetized star, plasma will inevitably ex-
ist in the magnetosphere around the newly formed event
horizon. Furthermore, BHs can generate a self-regulated
plasma supply through electron-positron discharges near
the event horizon [6–8]. The discharges can fill the mag-
netosphere with plasma in a light crossing time.

The presence of highly conducting plasma, and thus
non-zero stress-energy tensor of matter, dramatically
changes the vacuum dynamics assumed in the classical
no-hair theorem. Essentially, in the limit of vanishing
resistivity a topological constraint is imposed which pre-
vents the magnetic field from sliding off the event horizon
[9]. The only way for the BH to lose its magnetic field
is for the field to change its topology (reconnect). Fast
magnetic reconnection occurs through the tearing insta-
bility [10]. A chain of plasmoids (magnetic loops con-
taining plasma) forms along the reconnection layer which
are ejected at relativistic velocities. For highly magne-

tized collisionless plasma (as expected in a BH magneto-
sphere), the reconnection rate vrec ∼ 0.1c is independent
of the magnetization [11–13]. The lifetime of the mag-
netic flux on the event horizon should be determined in
part by this universal reconnection rate.

Previous work in an ideal fluid approximation cor-
rectly established the qualitative evolution of a dipole
magnetic field on the event horizon opening into a split-
monopole [9]. However, it neglected collisionless physics,
and was performed at low numerical resolution such
that the reconnection was not in the high Lundquist
number regime [9, 14]. This lead to the conclusion
of an extremely long lifetime of the magnetic flux on
the event horizon, dictated by the resistive timescale
of the plasma [9]. In this Letter we describe for the
first time GRPIC (general-relativistic particle-in-cell)
and GRRMHD (general-relativistic resistive magnetohy-
drodynamics) simulations which are converged and pro-
duce the correct reconnection physics.

The system is solved numerically in Kerr spacetime.
Kerr-schild coordinates (t, r, θ, φ) are used so that all
quantities are regular at the event horizon. The di-
mensionless BH spin is set to a = 0.99 to maximize
the ergosphere volume. We define “fiducial observers”
(FIDOs), whose worldlines are normal to spatial hyper-
surfaces. We assume that the neutron star was already
surrounded by plasma, and that it collapsed into a BH
before the simulation begins. This setup is sufficient to
test the no-hair theorem because when plasma is present,
the magnetic field cannot escape before the event horizon
has formed [9]. The initial condition for all simulations
is a magnetic dipole described by the vector potential
Aφ = B0 sin2 θ/r, where B0 is the dimensionless mag-
netic field strength at the horizon as measured by the
FIDO. The magnetic field components are obtained from
Bi = εijk∂jAk/

√
γ, where

√
γ is the spatial metric deter-

minant. In vacuum non-zero∇×(αBBB) is quickly radiated
away or swallowed by the BH (α is the lapse). However,
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TABLE I. Summary of the simulation parameters. For all
GRRMHD runs the diffusivity is η = 10−5. For MHD runs
Nr × Nθ × Nφ refers to the effective resolution. Runs with
Nφ = 1 are axisymmetric, while those with Nφ > 1 refer to
3D simulations. All models have spin a = 0.99 except VAC0,
which has a = 0.

Model rL λp Nr ×Nθ ×Nφ
VAC0 — — 9600× 8016× 1
VAC1 — — 9600× 8016× 1

GRPIC1 1× 10−5 3× 10−3 2880× 2160× 1
GRPIC2 3× 10−5 6× 10−3 2880× 2160× 1
GRPIC3 1× 10−4 1× 10−2 2880× 2160× 1

GRRMHD1 — — 6144× 3072× 1
GRRMHD2 — — 3072× 1536× 1536

when plasma is present non-zero∇×(αBBB) drives currents
which slow down the balding process.

The kinetic plasma simulations are performed us-
ing the general-relativistic particle-in-cell (PIC) code
Zeltron [7]. We solve the equations of motion for pair
plasma particles, together with Maxwell’s equations for
electromagnetic fields. All lengths are given in units of
rg = GM/c2 with M the BH mass, and times in units of
rg/c. The particles have mass m, and charge ±e. The
GRPIC simulations begin with vacuum, and plasma par-
ticles are injected with density proportional to the local
parallel electric field as a proxy for the electron-positron
discharge (see [7] for details of the injection scheme).

We set the dimensionless magnetic field strength at
the event horizon B0 = rg/rL, with rL the Larmor ra-
dius. For the gravitational collapse of a neutron star
it implies B0 ∼ 1014(M/M�)(B/1012 G). In this work
we scale it down, and consider B0 ∼ 104, 3 × 104, 105.
We show that our results are independent of B0, as long
as the plasma is highly magnetized. The characteristic
minimum plasma density required to support the rotat-
ing magnetosphere is the Goldreich-Julian number den-
sity [15], n0 = ΩHB0/(2πce), where ΩH = acrg/[r

2
H +

(rga)2] is the angular velocity of the event horizon ra-
dius rH = rg(1 +

√
1− a2). It implies the characteristic

magnetization σ0 = B2
0/(4πn0mc

2) = (1/2)(ωB/ΩH) =
(1/4)(ωp/ΩH)2 � 1, where ωp = (4πn0e

2/m)1/2 is the
plasma frequency and ωB = c/rL the Larmor frequency.
We have preserved the astrophysically relevant hierarchy
of scales rL � λp � rg, and ΩH � ωp � ωB , where
λp = c/ωp is the plasma skin depth.

The computational domain of the axisymmetric GR-
PIC simulations covers 0.99 ≤ r ≤ 75, and 0 ≤ θ ≤ π.
Simulations for each of the (3) magnetic field strengths
were performed at two resolutions to check for numerical
convergence (a total of 6 kinetic plasma simulations): (i)
Nr ×Nθ = 1440× 1080, and (ii) Nr ×Nθ = 2880× 2160.
The grid is uniformly spaced in log r and cos θ, so that
resolution is concentrated near the BH horizon, and
the equator. We check that the plasma skin depth is
well resolved a posteriori, since the plasma density is

determined self-consistently. Electromagnetic fields are
damped and particles are absorbed at the outer bound-
ary in order to mimic an outflow boundary condition. For
r ≤ rH all characteristics are inward, and causality pre-
vents waves and plasma from escaping. Therefore, the
equations are solved without modification at the event
horizon, and no boundary condition is imposed there.

The GRRMHD simulations are performed using the
Black Hole Accretion Code [16–18]. A minimum density
is set throughout the domain such that the magnetization
σ � 1, and the plasma is nearly force-free. We set a
constant and uniform diffusivity η = 10−5, so that the
Lundquist number S = vAL/η ≈ η−1 = 105 is above the
plasmoid instability limit S > 104 [10], where vA ≈ c is
the Alfvén speed and L ≈ re−rg ≈ 1 is the characteristic
length of the current-sheet inside the ergosphere.

The computational domain of the GRRMHD simula-
tions covers 0.99 ≤ r ≤ 200, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π.
By adding AMR, we increase resolution at the current-
sheet to assure convergence. The base grid, and addi-
tional AMR blocks are uniformly spaced in log r, and φ,
while the θ grid is concentrated near the equator.

The evolution of all simulations is qualitatively similar.
In GRPIC, strong electric fields induced by spacetime ro-
tation near the event horizon triggers particle injection
and rapidly fills the magnetosphere with plasma up to a
density n ∼ Mn0, where M ∼ few is the multiplicity,
while GRRMHD begins with a static low-density plasma
throughout the domain. In the ergosphere plasma is
dragged into co-rotation with the BH, bending field-lines
in the φ direction and inflating the poloidal magnetic
field. As field-lines extend in the radial direction, flux on
the horizon moves toward the equator, and some loops
which close inside the ergosphere are pushed into the BH.
After t ≈ 40 rg/c, the dipole has opened into a split-
monopole with ΩΩΩ · BBBp > 0 in both hemispheres, where
ΩΩΩ is the angular velocity vector of the BH and BBBp is the
poloidal magnetic field. The field-lines rotate rigidly with
angular velocity ΩF = ΩH/2, in agreement with force-
free solutions [6]. The toroidal magnetic field Hφ has
opposite sign to Br in each hemisphere (Fig. 1, right) in-
dicating swept-back field-lines, whereHHH = αBBB−βββ×DDD, βββ
is the shift, and DDD the electric field. A well defined MHD
stagnation surface is established, separating regions of in-
flow 〈vr〉 < 0, and outflow 〈vr〉 > 0 (Fig. 1, dashed grey
curve). Here 〈...〉 indicates averaging over the particles
in a single grid-cell.

Magnetic reconnection is first triggered near the stag-
nation surface in both GRPIC and GRRMHD, and
rapidly spreads along the entire current-sheet. The on-
set of reconnection occurs later in GRRMHD t ∼ 70
rg/c, compared to GRPIC t ∼ 30 rg/c. However, once
the current-sheet is sufficiently thin the tearing instabil-
ity develops and a chain of self-similar plasmoids forms.
Generally plasmoids born inside the stagnation surface
move slowly (v < 0.1c) toward the event horizon and fall
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FIG. 1. Reconnecting magnetosphere in the FIDO frame (GRPIC1) at t = 100 rg/c. Green curves show poloidal magnetic
flux surfaces, and white curves show the boundary of the ergosphere. The black circle is the interior of the BH event horizon.
Left: Color shows radial and θ components of the bulk plasma 3-velocity in the orthonormal tetrad basis. The grey dashed
curve indicates the stagnation surface defined by 〈vr〉 = 0. Right: Azimuthal component of the auxiliary field HHH.

into the BH, while those born outside are ejected from
the magnetosphere and accelerate to relativistic velocities
(v ≈ c). Therefore, we identify the stagnation surface at
the equator as a main site of field-line “pinching”, and a
primary X-point in the global magnetosphere. Occasion-
ally plasmoids born inside the stagnation surface have
sufficient kinetic energy to escape.

We analyzed the reconnection rate for all simulations
by measuring the inflow velocity of flux into the current-
sheet. The analysis is performed by transforming the
electric and magnetic field components into the locally
Minkowski reference frame of the FIDO. The inflow ve-
locity is then calculated using the component of EEE ×BBB
in the direction perpendicular to the current-sheet, and
avoiding plasmoids. We confirm σ � 1 in the upstream
plasma, so that vA/c = (σ/(σ + 1))1/2 ≈ 1, and the re-
connection is in the relativistic regime. All components
of the magnetic field change sign at the current-sheet,
indicating zero guide-field reconnection.

The measured reconnection rate in the GRPIC simu-
lations vrec ≈ 0.1c is consistent with studies of magnetic
reconnection in relativistic collisionless plasmas [11–13].
For the GRRMHD simulations the high Lundquist num-
ber S ≈ 105 � 104 ensures that the reconnection occurs
deep in the plasmoid dominated regime [19]. The recon-
nection rate in resistive MHD at high Lundquist number
is vrec ≈ 0.01vA [10], which is confirmed by our measured
vrec ≈ 0.01c − 0.02c and is consistent with other studies
in relativistic MHD [20] where the reconnection dynam-
ics is modified by vA → c. In GRPIC the plasmoids grow
at a rate ∼ 0.1c, until they are ejected and the growth is
suppressed as they reach relativistic velocities. Thus the
plasmoids are on average smaller in GRRMHD (Fig. 2),

where the growth rate ∼ 0.01c is smaller.

Reconnection in collisionless pair plasma occurs due
to kinetic effects resulting from the divergence of the
anisotropic electron pressure tensor, which plays the role
of an effective non-uniform diffusivity [21]. Therefore,
the difference in reconnnection rates between the two
formalisms can be attributed to the use of a uniform
diffusivity in GRRMHD as a proxy for kinetic effects,
representing the simplest model of reconnection and plas-
moid formation, while in GRPIC the dissipation at the
current-sheet is determined from first principles.

The reconnection is collisionless when the plasma skin
depth λp is larger than the elementary current-sheet
width in the resistive-MHD chain w ∼ 100η/vA ∼ 100η/c
[10, 22], where η is the diffusivity due to coulomb colli-
sions of pairs. Since our simulations do not include the
detailed pair production and collision physics, we esti-
mate analytically when this condition is satisfied [23].
The temperature of the reconnection layer is estimated
by assuming the combined pressure of radiation and pairs
is comparable to B2/(8π). The density of pairs is then
given by the annihilation balance. We find that the re-
connection is evidently collisionless when B � 1012 G.
However, if the magnetic field is very strong B & 1012 G,
or pair production is very efficient, the separation be-
tween the two regimes is less clear, and a self consis-
tent calculation is required to determine the reconnection
rate. However, even in this intermediate case, the GR-
RMHD simulations described in this work with uniform
η provide a lower limit on the reconnection rate.

The magnetic flux on the event horizon Φ decays quasi-
exponentially with time (Fig. 3). In GRPIC the flux
decays with characteristic timescale τ ≈ 100 rg/c, and
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FIG. 2. Different realizations of the reconnecting magnetosphere in the FIDO frame. Color shows the cold plasma magnetization
σ. Top: GRPIC1 at t = 100 rg/c, σ = B2/(4πmnc2). Bottom: GRRMHD1 at t = 311 rg/c, σ = B2/(4πρc2). The GRPIC
simulation (top) displays larger plasmoids than GRRMHD (bottom) due to the faster reconnection rate.

FIG. 3. Flux on the event horizon vs time for vacuum (power
law decay), collisional MHD plasma (exponential decay), and
collisionless plasma (faster exponential decay).

in GRRMHD τ ≈ 500 rg/c (Fig. 3). The difference
in timescales can be attributed to different reconnection
rates in these formalisms, which differ by a factor ∼ 5.
Since B and n ∝ B decay exponentially, all components
of the stress-energy tensor become vanishingly small at
late times and the no-hair theorem is satisfied. We cal-
culate the charge of the BH at the end of the GRPIC
simulation as Q = (1/4π)

∫
Dr√γdθdφ at r = rH and

find that Q = 0, so the final state is a Kerr BH.

The decay timescale converges with decreasing rL/rH

in GRPIC (Fig. 3), indicating the correct asymptotic be-
haviour with a sufficient separation of scales. Therefore,
the measured decay timescale is independent of B, as
long as the plasma is highly magnetized, σ � 1, and fi-
nite Larmor radius corrections are negligible, rL/rg � 1.

The evolution of Φ is estimated analytically using Fara-
day’s law, and assuming a constant reconnection rate
on the equator at the stagnation surface [23, 27]. In
this toy model Φ decays exponentially on a timescale
τ ≈ 3rg/〈vθ〉, with 〈vθ〉 the θ component of the plasma
3-velocity in the orthonormal tetrad basis (Fig. 1). For
example, in GRPIC, the measured 〈vθ〉 ≈ 0.02 − 0.04c
at the current-sheet implies τ ∼ 100 rg/c, consistent
with Fig. 3. The local reconnection rate observed by
the FIDO is estimated by taking into account time di-
lation at the stagnation surface. For GRPIC it implies
〈vθ〉/(cα) ∼ 0.05, with α evaluated on the equator at the
stagnation surface, consistent with the measured values.

In 3D (GRRMHD2), the balding proceeds similarly to
the axisymmetric simulations (Fig. 3, cyan curve), but
the plasmoid instability leads to non-axisymmetric (in
φ) structures. Therefore, 3D plasmoids, or flux tubes of
tangled field-lines with a finite extent in φ, generally dis-
play more complex topologies than those in 2D (Fig. 4).

The flux of conserved energy through spherical shells,
as seen by an observer at infinity is comparable in magni-
tude to LBZ = 0.053Ω2

HΦ2/(4πc) [28], indicating success-
ful activation of the Blandford-Znajek mechanism [6, 23].
Large fluctuations up to several LBZ are seen at the lo-
cations of plasmoids. We observe the emission of fast
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FIG. 4. Reconnecting magnetosphere in 3D (GRRMHD2) at t = 118 rg/c. Left: Volume rendering shows σ = B2/(4πρc2) ,
green tubes are magnetic field-lines which penetrate the event horizon, red tubes are magnetic field-lines which are reconnecting
in the current-sheet. Right: 2D slice of GRRMHD2 in the φ = 0 half-plane. Color shows σ, green curves are magnetic field-lines
in the φ = 0 half-plane. The picture highlights the non-axisymmetric nature of reconnection in 3D, yet still displays similar
fundamental structures — X-points (inset 1), and helical winding of magnetic field-lines in plasmoids (flux ropes) (inset 2).

modes from plasmoid mergers (Fig. 2). In the high−σ
limit, and where B ∼ 106 G, these fast modes cor-
respond to vacuum electromagnetic waves in the radio
band, and could be observed as coherent radio emission
[29]. The escaping giant plasmoids (Fig. 2) may shock
the upstream wind, resulting in coherent synchrotron
maser emission [30, 31]. For collisionless plasma, we mea-
sure the total dissipative power as seen by an observer
at infinity Ldiss,∞ ≈ 0.4LBZ. When the magnetic field
is strong (B & 106 G) as expected in BH-NS mergers,
the reconnection is radiative and most of the dissipated
magnetic energy will go into photons. In this regime,
Ldiss,∞ ≈ 0.4LBZ ∼ 4×1045M2

10�B
2
12 erg s−1 corresponds

to emission in the hard X-ray band [32]. We also observe
a population of negative energy-at-infinity particles lo-
calized in the current sheet inside the ergosphere. They
contribute to JJJ = (c/4π)∇×HHH, and some are advected
into the BH with plasmoids — an instance of the Penrose
process facilitated by magnetic reconnection [7, 33].

We considered Kerr BH’s endowed with highly mag-
netized plasma-filled magnetospheres. We find that: (i)
The no-hair theorem holds, in the sense that all compo-
nents of the stress-energy tensor decay exponentially in
time, (ii) Reconnection occurs at the universal rate when
measured in the locally Minkowski frame of the FIDO,
(iii) The lifetime of the magnetic field on the event hori-
zon is controlled by the local reconnection rate measured
by the FIDO in concert with other global effects, and (iv)
The final state is a Kerr BH with charge Q = 0. Bald-
ing BHs resulting from the merger or collapse of compact
objects should appear as a spectacular source of hard X-
rays for a short duration, similar to the flares of galactic
magnetars. Observation of the X-rays requires a clean en-
vironment around the BH. It is possible during the gravi-
tational collapse of a rotationally supported massive neu-

tron star, and in BH-NS mergers with a high mass ratio,
so that the NS falls through the event horizon without
forming a torus or disk. GRB’s and other collapsars may
be different to the scenario described in this work, de-
pending on how much matter surrounds the newly formed
BH. The decay of magnetic flux on the event horizon may
also explain powerful X-ray and near-infrared flares and
hot spots [34] driven by plasmoid-regulated reconnection
in magnetically dominated supermassive BH magneto-
spheres [19, 33]. The faster reconnection rate in colli-
sionless plasma implies that larger plasmoids, powering
a flare near the BH, can form in a shorter time and in
this way regulate the typical flare duration.
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