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Time-varying optical media, whose dielectric properties are actively modulated in time, introduce a host of
novel effects in the classical propagation of light, and are of intense current interest. In the quantum domain,
time-dependent media can be used to convert vacuum fluctuations (virtual photons) into pairs of real photons.
We refer to these processes broadly as “dynamical vacuum effects” (DVEs). Despite interest for their potential
applications as sources of quantum light, DVEs are generally very weak, presenting many opportunities for en-
hancement through modern techniques in nanophotonics, such as using media which support excitations such as
plasmon and phonon polaritons. Here, we present a theory of weakly modulated DVEs in arbitrary nanostruc-
tured, dispersive, and dissipative systems. A key element of our framework is the simultaneous incorporation
of time-modulation and “dispersion” through time-translation-breaking linear response theory. As an example,
we use our approach to propose a highly efficient scheme for generating entangled surface polaritons based on
time-modulation of the optical phonon frequency of a polar insulator.

The nonvanishing zero-point energy of quantum electrody-
namics leads to a variety of observable consequences such as
atomic energy shifts [1], spontaneous emission [2, 3], forces
[4], and non-contact friction [5, 6]. A famously cited conse-
quence of vacuum fluctuations is the Casimir effect [7–11],
in which two uncharged bodies placed close together experi-
ence mutual attraction (or repulsion, in some cases [12–14])
due to electromagnetic field fluctuations. The character of any
fluctuation-based phenomenon is determined by the electro-
magnetic modes around the structure of interest. As a result,
the last two decades have provided promising insights about
how nanostructured composites of existing and emerging opti-
cal materials can modify observable effects of zero-point fluc-
tuations.

In time-varying systems, electromagnetic vacuum fluctua-
tions can lead to the production of real photons. Famously, the
“dynamical Casimir effect” predicts how a cavity with rapidly
oscillating boundaries produces correlated photon pairs [15].
Other related phenomena include photon emission from rotat-
ing bodies [16], spontaneous parametric down-conversion in
nonlinear materials [17], and cosmological phenomena [18–
24]. The close connections among these phenomena are dis-
cussed in [25]. These “dynamical vacuum effects” (DVEs)
have been studied in depth since the 1960s for their relation
to fundamental questions about the quantum vacuum, and for
their potential applications as quantum light sources [26–28].
Specifically, these processes are known to produce squeezed
light (which is entangled if more than one mode is involved)
[29, 30] which enjoys applications in quantum information
[31], spectroscopy [32], and metrology [33].

Despite high interest, these DVEs are very weak, with the
first direct observation of the dynamical Casimir effect occur-
ring as recently as 2011 [34]. The strength of these effects can
in principle be enhanced by nanostructured optical compos-
ites, and polaritonic materials with strong resonances, as has
been seen with other fluctuation-based phenomena [2, 35, 36].
However, considering DVEs in such materials is complicated
by the subtleties of optical materials which are simultaneously

dispersive and time-dependent. Largely due to this fundamen-
tal issue, there is not yet a general framework which describes
these emission effects in arbitrary materials [37].

In this Letter, we present a theoretical framework, based on
macroscopic quantum electrodynamics (MQED), which de-
scribes DVEs from weak modulations in arbitrary nanostruc-
tured, dispersive, and dissipative time-dependent media. This
framework enables fundamental studies of DVEs in systems
where time modulation frequencies are comparable to transi-
tion frequencies in dispersive materials. To exemplify these
new theoretical capabilities, we show that phonon-polariton
pairs can be generated on thin films of polar insulators (e.g.,
silicon carbide and hexagonal boron nitride), whose trans-
verse optical (TO) phonon frequency is rapidly modulated in
time. The high density of states (DOS) of surface phonon-
polariton modes, in conjunction with dispersive resonances,
leads to phonon-polariton pair generation efficiencies which
are orders of magnitude higher than traditional parametric
down conversion. These findings could enable experiments
which generate a continuous spectrum of infrared surface po-
laritons.

There are inherent subtleties in describing the optical re-
sponse of time-modulated dielectrics which are also disper-
sive. In systems where frequencies of time-modulation are far
from any transition frequencies in the system, one can con-
sider an “adiabatic” description of the time-dependent mate-
rial. In this case, the permittivity can be taken as ε(ω; t), or
simply ε(t), as is done in many theoretical and experimen-
tal studies [38–44]. When the adiabatic approximation breaks
down (e.g. in disperisve systems with similar modulation and
transition frequencies), we must revert to the most general di-
electric function allowed by linear response theory. In the
absence of time-translation invariance, the polarization P(t)
is connected to the applied field E(t) through a susceptibil-
ity χ(t, t′). Consequently, the frequency response must be
characterized by a two-frequency susceptibility χ(ω, ω′) ≡∫∞
−∞ dt dt′ χ(t, t′)eiωte−iω

′t′ [67]. The corresponding per-
mittivity is ε(ω, ω′) = 2πδ(ω − ω′) + χ(ω, ω′), as illustrated
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FIG. 1: Photon pair emission from arbitrary time-dependent di-
electric media. (a) A dispersive dielectric ε(r, ω) subject to an ar-
bitrary time modulation can be described as having the more gen-
eral dielectric function ε(r, ω, ω′) which encodes both time depen-
dence and dispersion. (b) A schematic of a thin film of polar insulator
which has a small top layer which undergoes a time modulation. As a
result, surface phonon-polariton pairs are produced with frequencies
ω, ω′, and wavevectors q, q′.

in Fig. 1a. In this case, the displacement field D is connected
to the electric field E as D(ω) = ε0

∫∞
−∞

dω′

2π ε(ω, ω
′)E(ω′).

We use this apparatus to parameterize the time-modulated ma-
terials we consider in our theory of DVEs. We consider a
photonic structure (of arbitrary geometry and material com-
position), with a local dispersive dielectric function εbg(r, ω).
Then we impart some spatiotemporal change to the suscepti-
bility ∆χ(r, ω, ω′), so that the total permittivity is

ε(r, ω, ω′) = εbg(r, ω)[2πδ(ω − ω′)] + ∆χ(r, ω, ω′). (1)

Our theory of DVEs in systems described by the general
form of Eq. 1 is based on a Hamiltonian description of
electromagnetic field subject to interactions in general time-
varying media. We use macroscopic quantum electrodynam-
ics (MQED) [45, 46] to quantize the electromagnetic field
in the background structure εbg(r, ω). In this framework,
the Hamiltonian of the bare electromagnetic field is HEM =∫∞
0
dω
∫
d3r ~ω f†(r, ω) · f(r, ω), where f (†)(r, ω) is the an-

nihilation (creation) operator for a quantum harmonic oscil-
lator at position r and frequency ω. In such a medium, the
electric field operator in the interaction picture is given as

E(r, t) = i

√
~
πε0

∫ ∞
0

dω
ω2

c2

∫
d3r′

√
Im εbg(r′, ω)

×
(
G(r, r′, ω)f(r′, ω)e−iωt − h.c.

)
.

(2)

Here, G(r, r′, ω) is the electromagnetic Green’s
function of the background which satisfies(
∇×∇×−εbg(r, ω)ω

2

c2

)
G(r, r′, ω) = δ(r − r′)I ,

where I is the 3 × 3 identity matrix. We assume that the
permittivity change described by Eq. 1 creates a change to the
polarization density P(r, t), interacting with the electric field
via V (t) = −

∫
d3rP(r, t) · E(r, t) [17]. Then by relating

the polarization to the electric field through linear response,
we find the interaction Hamiltonian

V (t) = −ε0
∫
d3r dt′∆χij(r, t, t

′)Ej(r, t
′)Ei(r, t), (3)

where we have used repeated index notation. When the per-
mittivity change is small the electric field operator is well-
approximated by that of the unperturbed field given in Eq. 2
(see S.I., which includes references [47–51]). Since almost
all achievable time modulations of nanostructures are weak,
this perturbative assumption poses little practical restriction
on this formalism. To compute rates of two-photon emission,
we consider scattering matrix elements that connect the elec-
tromagnetic vacuum state to final states which contain two
photons. Taking the S-matrix elements to first order in per-
turbation theory (see S.I.), the probability P of two-photon
emission is

P =
1

2π2c4

∫ ∞
0

dω dω′ (ωω′)2
∫
d3r d3r′

× Tr [∆χ(r, ω,−ω′) ImG(r, r′, ω′)

∆χ†(r′, ω,−ω′) ImG(r′, r, ω) ] ,

(4)

where ∆χ† is the matrix conjugate transpose of the tensor ∆χ
and Tr[·] denotes the trace. The Green’s function encodes ev-
erything about background, and its imaginary part is closely
related to the local DOS. Meanwhile, the tensor ∆χ encodes
everything about the imposed time dependence of the mate-
rial.

As an example, our theoretical framework describes dis-
persion and loss in time-modulated thin films which gener-
ate pairs of entangled surface polaritons. Surface polaritons
have enjoyed a myriad of applications due to their ability to
maintain high confinement, and relatively low loss [52–55].
We specifically examine surface phonon-polaritons (SPhPs)
on thin films of the polar insulators silicon carbide (SiC) and
hexagonal boron nitride (hBN). In the infrared, the dielec-
tric response of polar insulators is well-described by the reso-
nance of transverse optical (TO) phonon modes. The permit-
tivity in this frequency range is given by the Lorentz oscillator
εbg(ω) = ε∞+ω2

p/D(ω) where ε∞ is the permittivity at high
frequencies, D(ω) ≡ ω2

0 − ω2 − iωγ, ω0 is the TO phonon
frequency, ωp is the plasma frequency, and γ is the damping
rate. Phonon-polaritons are supported above the resonance at
ω0, where Re εbg(ω) < −1, which is referred to as the Rest-
strahlen band, or “RS band” (Fig. 2a).

To highlight the interplay between dispersion and time de-
pendence in two-polariton spontaneous emission, we com-
pare two different modulations of the polar insulator struc-
tures (Fig. 2b). The first is a nondispersive modulation, where
a layer of thickness d has its index perturbed by a constant
amount as ε(t) = εbg(1 + δε f(t)). In this case, we have
∆χ(r, ω, ω′) = δε f(ω − ω′) for 0 < z < d, and 0 oth-
erwise. In this expression, f(ω) is the Fourier transform of
the modulation profile. If the change in index is caused by a
nonlinear layer with χ(2) = 100 pm/V, then an electric field
strength of 107 V/m gives δε = 10−3. The second is a dis-
persive modulation, where over a thickness d, the transverse
optical phonon frequency ω0 is modulated to deviate from its
usual value as a function of time as ω2

0 → ω2
0(1 + δω f(t)).
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FIG. 2: Dynamical Casimir effect for silicon carbide phonon-
polaritons. (a) Dispersion relation of phonon-polaritons on dslab =
100 nm thick slab of SiC. Dashed lines mark the edges of the
RS band. Inset shows the Lorentz oscillator permittivity around
ω0 = 1.49 × 1014 rad/s. (b) Schematic representation of nondis-
persive time modulations of the permittivity, versus dispersive mod-
ulations of the transverse optical phonon frequency ω0. (c-f) Dif-
ferential rate per unit area (1/A)dΓ/dω for phonon-polariton pairs
production for various values of Ω0/ω0 = {2.01, 2.1, 2.3, 2.4}, as
well as short (T = 80 fs) and long (T = 5 ns) pulses. The modu-
lated region is assumed to be d = 10 nm thick. Panels (c, d) show
a nondispersive modulation with δε = 10−3. Panels (e, f) show a
dispersive modlation with δω = 10−3.

In this case, ∆χ(ω, ω′) = δω ω2
0ω

2
pf(ω − ω′)/(D(ω)D(ω′))

to first order in δω (see S.I.). From the experimental models
presented in [56] for SiC, we estimate that an applied field
strength of 1 GV/m gives rise to a frequency shift of the order
δω = 10−3. We will compare the two modulation types with
the same fractional change in parameter δε = δω = 10−3 to
highlight that around ω0, a fractional change δω causes much
stronger effects than δε. Later, we comment on efficiencies
given the same applied field strength.

We modulate the surface layer with perturbations of the
form f(t) = cos(Ω0t)e

−t2/2T 2

. This enables us to consider
modulations across many timescales, from ultrashort pulses,
to nearly monochromatic (CW) modulations. Applying our
formalism to the geometry depicted in Fig. 1b, we find that
the probability of two-polariton emission per unit frequency

ω and ω′ is given as

1

A

dP

dωdω′
=
|∆χ(ω,−ω′)|2

16π3

∫ ∞
0

dq q
(
1− e−2qd

)2
× Im rp(ω, q) Im rp(ω

′, q).

(5)

Here, rp(ω, q) is the p-polarized reflectivity associated with
the interface, and A is the sample area [68] Equation 5 en-
codes the frequency correlations between the two emitted
quanta ω and ω′. Once ∆χ is chosen, Eq. 5 can be in-
tegrated over ω′ and normalized by the pulse duration as
Γ ≡ P/T to obtain an area-normalized rate per frequency
(1/A)dΓ/dω = (1/AT )

∫∞
0
dω′ dP/dωdω′. This quantity

represents the emission rate which is detected classically at
frequency ω, and thus no longer discriminates between the
two photons of the emitted pair.

We obtained results for SiC which is modulated both dis-
persively and nondispersively. Fig. 2a shows the phonon-
polariton dispersion for a 100 nm layer of SiC (dielectric pa-
rameters taken from [57]). Figs. 2c-f show the corresponding
rate distribution (1/A)dΓ/dω for each of the marked modu-
lation frequencies. For a long pulse (Fig. 2c), the two polari-
tons obey an energy conservation constraint ω + ω′ ≈ Ω0.
In this regime, the behavior of the rate spectrum dΓ/dω is
determined by where Ω0/2 lies in the RS band (see dashed
lines on Fig. 2a). For various Ω0, the spectra are symmetri-
cally peaked around Ω0/2, with widths set by the loss. The
strongest response occurs around Ω0/ω0 = 2.4 where the
DOS of SPhPs is highest. At the slightly lower excitation
frequency Ω0/ω0 = 2.3, the central peak at Ω0/2 is flanked
by two symmetrical side peaks. These secondary peaks oc-
cur since Ω0/2 lies in between two bands of the dispersion,
and thus one possibility for satisfying the approximate energy
conservation relation is that one polariton is emitted into each
band at the same wavevector q. Also notably, the modulation
associated with Ω0/ω0 = 2.01 produces very little response,
owing to the low DOS at the bottom of the RS band. For
a short pulse (Fig. 2d), the general trend in magnitudes be-
tween the excitation frequencies is the same. Additionally,
since a short pulse eliminates the strict energy conservation
condition, polaritons are emitted at many frequency pairs. As
a result, the shape of the spectrum for most excitation frequen-
cies is peaked near the top of the RS band where the DOS is
highest.

For dispersive modulations, many aspects of SPhP pair
production remain the same. However, several key changes
emerge as a result of the difference in the factor |∆χ|2 ∝
1/|D(ω)D(ω′)|2, which becomes large when ω, ω′ ≈
ω0. This condition corresponds to parametric resonance of
phonons which dictate the dielectric response. While the be-
havior of the monochromatic modulation (Fig. 2e) for higher
frequencies Ω0 remains qualitatively the same, the magni-
tudes of the peaks for Ω0/ω0 = 2.1, 2.01 increase substan-
tially. Interestingly, for Ω0/ω0 = 2.1, this resonance am-
plifies frequency distribution tails, so that nondegenerate pair
production is actually slightly preferred. For short pulses (Fig.
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FIG. 3: Achieving strong DVEs through dispersive modulations. (a) Dispersion of surface phonon-polaritons on a thin layer of hBN
(dslab = 100 nm) in the upper RS band (ω0 = 2.56× 1014 rad/s). (b, c) Differential rate per unit area (1/A)dΓ/dω for phonon-polariton pairs
production for various values of Ω0/ω0 = {2, 2.05, 2.1, 2.15}, as well as short (T = 80 fs) and long (T = 5 ns) pulses. (d) Total emission
rate per area of phonon-polariton pairs as a function of pulse duration T and frequency Ω0. (e-g) Same as (b-d), except that the modulation
is dispersive. Panel (g) shows the strong enhancement which occurs for monochromatic modulations when Ω0/ω0 = 2, corresponding to
enhancement of DVEs by dispersive parametric amplification.

2f), the DOS behavior remains largely unchanged. However,
distribution tails at the bottom of the RS band near ω0 are
raised, in contrast to the nondispersive behavior (Fig. 2d).
There are two main factors which may cause strong enhance-
ment of the phonon emission spectrum: high DOS, and para-
metric resonance around ω0. For SiC, these large dispersive
enhancements occur around ω0, which is actually at a point of
very low DOS in the dispersion. We can then reason that the
strongest emission should come from systems where the dis-
persive resonance overlaps more strongly with the high DOS.

To this end, we elucidate how SPhPs on hBN, due to
their multi-banded nature, can enjoy much stronger enhance-
ment through dispersive modulations. Unlike SiC, hBN is an
anisotropic polar insulator, with different transverse optical
phonon frequencies in the in-plane or out-of-plane directions.
As a result, hBN has two RS bands, and the dispersion rela-
tion is hyperbolic and multi-branched in each RS band [55].
The dispersion relation in the upper RS band of thin hBN is
seen in Fig. 3a (dielectric parameters taken from [58, 59]). In
contrast to SiC, the DOS of SPhPs is spread broadly across
the upper RS band. Figs. 3b,c show the emitted pair spec-
trum for a variety of driving frequencies, similarly to SiC.
Fringes in the emission spectra are a direct consequence of
interference among the many ways two PhPs can distribute
themselves into dispersion branches. Fig. 3d shows the total
emission rate integrated over the upper RS band for various
modulation frequencies Ω0 and pulse durations T . Due to the
relatively even DOS, the nondispersive emission rate is rela-
tively uniform (Γ/A ≈ 109µm−2s−1) across a wide range of
parameters.

For a dispersive modulation, the strongest emission oc-
curs for degenerate production around ω0 when the system
is modulated at 2ω0. Around this point (Fig. 3g), the emis-

sion rate is orders of magnitude higher than for long pulses
outside of the resonance around ω0. Even though achieving
δε = 10−3 through a nonlinear substrate requires a lower ap-
plied field than a TO phonon frequency shift of equivalent pro-
portion, the sensitive nature of the dispersive modulations pro-
vides opportunities for improved efficiency. We estimate that
with an applied field strength of 1 GV/m, the nondispersive
modulation achieved through a thin nonlinear (χ(2) = 100
pm/V) layer has a quantum efficiency of the order η ≈ 10−9,
while at the same field strength, the dispersive modulation has
η ≈ 10−5. Given that evidence of parametric amplification of
optical phonons in SiC has already been demonstrated [56],
we believe that efficient generation of SPhP pairs on SiC and
hBN by optical excitation should be feasible. We have also
applied our formalism to the generation of graphene plasmons
on a nonlinear substrate, and found this process could have an
efficiency η ≈ 10−4 (see S.I., which includes references [60–
62]). Such efficiencies could exceed the highest seen for pair
generation to date [63].

To generate surface polaritons experimentally, the chosen
material could be irradiated with strong laser pulses. Then,
grating couplers could be etched into the substrate so that a
fiber probe can receive the emitted light before polaritons are
attenuated. For quantum experiment, the fibers would be di-
rected toward a detection setup which measures the quantum
correlations of the two-photon state. It may also be possible
to measure the two-photon interference fringes which emerge
in the classical radiation distribution (e.g., Fig. 3b, e). Such
an observation could provide indirect evidence of entangled
pairs, even if a quantum correlated detection scheme is diffi-
cult to achieve.

In summary, we have presented a Hamiltonian theory which
governs photon interactions in dispersive time-dependent di-
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electrics. Our work shows that the role of dispersion is crit-
ical in describing and enhancing these phenomena, as we
showed for time-modulated polar insulators. Our framework
is amenable to design and optimization of complex struc-
tures for experiments and potential devices. Beyond this, the
Hamiltonian MQED formalism we have presented can en-
able further studies of light-matter interactions in arbitrary
time-dependent materials. For example, one could model
how spontaneous emission and energy-level shifts of quantum
emitters are modified via time-modulation. Finally, this for-
malism could provide opportunities for studying the role that
parametric amplification of quasiparticles can play in exotic
effects in solid-state systems such as light-induced supercon-
ductivity [64, 65]. Broadly, we anticipate that our framework
will describe phenomena in many timely experimental plat-
forms featuring ultrafast optical modulations.
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