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Sterile neutrinos with masses in the keV range are well-motivated extensions to the Standard
Model that could explain the observed neutrino masses while also making up the dark matter (DM)
of the Universe. If sterile neutrinos are DM then they may slowly decay into active neutrinos
and photons, giving rise to the possibility of their detection through narrow spectral features in
astrophysical X-ray data sets. In this work, we perform the most sensitive search to date for this and
other decaying DM scenarios across the mass range from 5 to 16 keV using archival XMM-Newton
data. We reduce 547 Ms of data from both the MOS and PN instruments using observations taken
across the full sky and then use this data to search for evidence of DM decay in the ambient halo
of the Milky Way. We determine the instrumental and astrophysical baselines with data taken far
away from the Galactic Center, and use Gaussian Process modeling to capture additional continuum
background contributions. No evidence is found for unassociated X-ray lines, leading us to produce
the strongest constraints to date on decaying DM in this mass range.

Sterile neutrino dark matter (DM) is a well-motivated
DM candidate that may give rise to observable nearly
monochromatic X-ray signatures [1–3]. In this scenario
the DM has a mass in the keV range and may decay
into an active neutrino and an X-ray, with energy set
by half the rest mass of the sterile neutrino [4]. Sterile
neutrino DM is motivated in part by the seesaw mecha-
nism for explaining the active neutrino masses [5, 6]. In
this work we present one of the most sensitive searches
for sterile neutrino DM, along with other DM candidates
that may decay to monochromatic X-rays, over the mass
range mχ ∈ [5, 16] keV. We do so by searching for DM
decay from the ambient halo of the Milky Way using all
archival data from the XMM-Newton telescope collected
from its launch until September 5, 2018.

This work builds heavily off the method developed in
Dessert et al. [7], which used XMM-Newton blank-sky ob-
servations (BSOs) to strongly disfavor the decaying DM
explanation of the previously-observed 3.5 keV uniden-
tified X-ray line (UXL). This UXL was found in nearby
galaxies and clusters [8–12]. However the analysis per-
formed in Dessert et al. [7] was able to robustly rule out
the DM decay rate required to explain the previous 3.5
keV UXL signals [13]. (For additional non-observations,
see Refs. [14–20].) We extend the search in Dessert et al.
[7] to the broader mass rangemχ ∈ [5, 16], and in doing so
implement the following notable differences: (i) we use a
data-driven approach to construct stacked, background-
subtracted data sets in rings around the Galactic Center
(GC), while Ref. [7] performed a joint-likelihood analy-
sis at the level of individual exposures, and (ii) we use
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Gaussian Process (GP) modeling to describe continuum
residuals, instead of parametric modeling as used in [7].

As demonstrated in Dessert et al. [7], BSO searches for
DM decaying in the Milky Way halo can be both more
sensitive and more robust than extra-galactic searches,
because (i) the expected DM flux, even at angles ∼45◦

away from the GC, rivals the expected flux from the most
promising extra-galactic objects, such as M31 and the
Perseus cluster; (ii) promising extra-galactic targets have
continuum and line-like X-ray features that are confound-
ing backgrounds for DM searches (dwarf galaxies being
an exception [18, 21]), while BSOs instead focus on the
lowest-background regions of the sky; (iii) extra-galactic
targets require pointed observations, while in principle
any observation collected by XMM-Newton is sensitive
to DM decay in the Milky Way, opening up considerably
more exposure time.

The limits presented in this work represent the
strongest found using the XMM-Newton instrument over
the energy range ∼2.5–8 keV. At higher energies our lim-
its are superseded with those found using the NuSTAR
satellite [22–26]. Ref. [24] performed a search similar in
spirit to that in this work (though with NuSTAR) in
that they looked for DM decay from the Milky Way halo
near the GC (∼10◦ away in their case), while Ref. [26]
searched for DM decay from M31 with NuSTAR.

Our results put in tension efforts to explain the abun-
dance of DM with sterile neutrinos. For example, in
the Neutrino Minimal Standard Model (νMSM) [27–29],
which may simultaneously explain the observed neutrino
masses, DM density, and baryon asymmetry, the Stan-
dard Model is supplemented by three heavier sterile neu-
trino states, the lightest of which is the DM candidate.
The DM abundance is generated through the mixing of
sterile and active neutrinos [1], which can further be
resonantly enhanced by a finite lepton chemical poten-
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tial [2, 29–35], though other production mechanisms are
also possible [3, 36, 37]. DM models such as axion-like-
particle DM [38] and moduli DM [39] predict similar UXL
signatures from DM decay.

Data reduction and processing. We process and ana-
lyze all publicly-available data collected before 5 Septem-
ber 2018 by the metal oxide semiconductor (MOS) and
positive-negative (PN) cameras on board XMM-Newton.
We subject each exposure to a set of quality cuts, which
are described shortly. Those exposures satisfying the
quality cuts are included in our angularly-binned data
products. In particular, we divide the sky into 30 con-
centric annuli centered around the GC, each with a
width of 6◦ in angular radius from the GC, rGC, where
cos(rGC) = cos(l) cos(b) in terms of the Galactic lon-
gitude, l, and latitude, b. We label these from 1 to
30, starting from the innermost ring. We further mask
the Galactic Plane such that we only include the region
|b| ≥ 2◦. In each ring we then produce stacked spectra
where, in each energy bin, we sum over the counts from
each exposure whose central position lies within that an-
nulus. We produce separate data sets for the MOS and
PN cameras, which have 2400 and 4096 energy channels,
respectively. In addition to stacking the counts in each
ring and energy channel, we also construct the appropri-
ately weighted detector response matrices in every ring
for forward modeling an incident astrophysical flux. The
full-sky maps and associated modeling data are provided
as Supplementary Data [40] in both the annuli and in
finer-resolution HEALPix binning [41]. We analyze the
MOS data from 2.5 to 8 keV and the PN data from 2.5
to 7 keV, in order to exclude intervals containing large
instrumental features.

Data analysis. Having constructed our data in all 30
rings, we divide the full sky into two regions of inter-
est (ROI): a signal ROI, consisting of annuli 1 through
8 (0◦ ≤ rGC ≤ 48◦ with |b| ≥ 2◦), inclusive, and
the background ROI, consisting of annuli 20 through 30
(114◦ ≤ rGC ≤ 180◦ with |b| ≥ 2◦). The regions are
illustrated in Fig. 1. The MOS (PN) exposure time in
the signal ROI is 25.27 Ms (5.56 Ms), whereas in the
background ROI it is 62.51 Ms (17.54 Ms). The sig-
nal flux is proportional to the D-factor, which is defined
by the line-of-sight integral of the Galactic DM density
ρDM, D ≡

∫
ds ρDM. In Fig. 1 we show the appropriately

weighted D-factor in each annuli. The motivation for the
two ROIs is that the signal should dominate in the inner
regions of the Galaxy and become progressively weaker
further away from the GC. The background ROI is chosen
to be large enough to have significantly more exposure
time than the signal ROI, so that using the background-
subtracted data does not significantly broaden the statis-
tical uncertainties. We stack the data over the full back-
ground ROI, which has D-factor Dbkg, and use this as
an estimate of the instrumental and astrophysical base-
line fluxes by subtracting this data from the data in each
ring of the signal ROI. This subtraction mostly removes
large instrumental lines, as illustrated in Supplementary
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Figure 1. Our fiducial D-factor, which is proportional to the
expected DM signal flux. Values are given in all 30 annuli,
which are 6◦ wide in angular distance from the GC (with
|b| > 2◦), and we define a signal and background ROI as
shown. In each ring, we compute the D-factor of all MOS
or PN exposures, weighted according to the observation time
and field of view. The horizontal line indicates Dbkg, the
mean D-factor in the background ROI.

Material (SM) Fig. S1.

We analyze the background-subtracted data in each
annulus for evidence of a UXL. The data is modeled
as a combination of narrow spectral features at the lo-
cations of known astrophysical and instrumental lines,
and a continuum flux which we account for using GP
modeling. Note that the instrumental lines need not be
completely removed by the data-subtraction procedure,
leaving a residual flux or flux deficit that must be mod-
eled. Astrophysical emission lines from the Milky Way
plasma should be brighter in the signal ROI, and so are
also expected to appear in the background-subtracted
data. For both astrophysical and instrumental lines, the
lines are modeled using the forward modeling matrices
for MOS and PN. We allow the instrumental lines to
have either positive or negative normalizations, while the
astrophysical lines are restricted to have positive nor-
malizations. To decide which lines to include in our
residual background model we start with an initial list
of known instrumental and astrophysical lines. The in-
strumental lines are determined from an analysis of the
background ROI data, while the astrophysical lines are
those expected to be produced by the Milky Way. In each
ring, and for MOS and PN independently, we then deter-
mine the significance of each emission line, keeping those
above ∼2σ. As a result, every ring has a different set of
lines included in the analysis. We note that it is conceiv-
able that a UXL might be inadvertently removed by an
overly-subtracted instrumental line at the same energy;
however, it would be highly unlikely for such a conspir-
acy to occur in every ring, given the varying D-factor.
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The effects of sub-threshold instrumental lines are miti-
gated through a spurious-signal nuisance parameter [42],
as discussed in the SM.

The unprecedented data volume incorporated into
this analysis necessitates a flexible approach to model-
ing the residual continuum emission, which is accom-
plished with GP modeling, in order to minimize back-
ground mismodeling. As opposed to parametric mod-
eling, where the model is specified by a specific func-
tional form and associated list of model parameters,
GP modeling is non-parametric: the model expecta-
tions for the data at two different energies, E and
E′, are assumed to be normally distributed with non-
trivial covariance. Taking the model expectation to
have zero mean, the GP model is then fully specified
by the covariance kernel, K(E,E′). We model the
mean-subtracted data using the non-stationary kernel
K(E,E′) = AGP exp

[
−(E − E′)2/(2EE′σ2

E)
]
, imple-

mented in george [43], where σE is the correlation-length
hyperparameter and AGP is the amplitude hyperparam-
eter. We fix σE such that it is larger than the energy
resolution of the detector, which is δE/E ∼ 0.03 across
most energies for MOS and PN, while ensuring σE is
kept small enough to have the flexibility to model real
variations in the data. The goal is to balance two com-
peting effects. If σE approaches the lower limit imposed
by the energy resolution of the detector, then the GP
model would have the flexibility to account for line-like
features, which would reduce our sensitivity when search-
ing for such features over the continuum background. On
the other hand, if σE is too large then the GP continuum
model may not accurately model real small-scale varia-
tions in the data. In our fiducial analysis we fix σE = 0.3,
though in the SM we show that our results are robust to
variations not only in this choice, but also to modifica-
tions to the form of the kernel itself. In contrast, the
hyperparameter AGP is treated as a nuisance parameter
that is profiled over when searching for UXLs.

We then follow the statistical approach developed
in Frate et al. [44], which used GP modeling to perform
an improved search for narrow resonances over a con-
tinuum background in the context of the Large Hadron
Collider. In particular, we construct a likelihood ratio
Λ between the model with and without the signal com-
ponent, where the signal is the UXL line at fixed energy
Esig. The null model is as above, the combination of a GP
model with a single nuisance parameter AGP, and a set
of background lines, whose amplitudes are treated as nui-
sance parameters. We use the marginal likelihood from
the GP fit in the construction of the likelihood ratio [44].
Note that as the number of counts in all energy bins
is large (� 100), we are justified in assuming normally-
distributed errors in the context of the GP modeling. We
then profile over all nuisance parameters. Finally, the dis-
covery significance is quantified by the test statistic (TS)
t = −2 ln Λ. We verify explicitly in the SM that under
the null hypothesis t follows a χ2-distribution. The 95%
one-sided upper limits are constructed from the profile
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Figure 2. The background-subtracted MOS data for the
innermost annulus, downbinned by a factor of four for pre-
sentation purposes. The indiciated best fit null and signal
models, for a 3.5 keV UXL, are constructed using the GP
modeling described in the text.

likelihood, as a function of the signal amplitude.
We implement this procedure and scan for a UXL from

2.5 to 8 keV in 5 eV intervals. At each test point we con-
struct profile likelihoods for signal flux independently for
each ring using the background-subtracted MOS and PN
data. We then combine the likelihoods between rings
– and eventually cameras – in a joint likelihood in the
context of the DM model, as discussed shortly. As an
example, Fig. 2 illustrates the signal and null model
fits to the innermost MOS background-subtracted signal-
annulus data for a putative UXL at 3.5 keV (indicated by
the vertical dashed line). Note that while the fit is per-
formed over the full energy range (2.5−8 keV) for clarity
we show the data zoomed in to the range 3 to 4 keV. In
this case the data have a deficit, which manifests itself as
a signal with a negative amplitude.
DM interpretation. We combine together the profile
likelihoods from the individual annuli to test the decay-
ing DM model. In the context of sterile neutrino DM
with mass mχ and mixing angle θ, the DM decay in the
Galactic halo produces an X-ray flux at energy mχ/2

that scales as Φ ∝ m4
χD sin2(2θ) [45]. Note that the

D-factors, appropriately averaged over observations in
the individual annuli, are illustrated in Fig. 1. Thus, at
fixed DM massmχ we may construct profile likelihoods as

functions of sin2(2θ) to appropriately combine the profile
likelihoods as functions of flux in the individual annuli.
We subtract off Dbkg from the D-factors in each signal
ring since any UXL would also appear in the background
ROI and thus be included in the background subtraction.

The D-factors may be computed from the DM density
profile of the Milky Way. Modern hydrodynamic cosmo-
logical simulations indicate that the DM density profile
in Milky Way mass halos generally have a high degree of
spherical symmetry (for a review, see Ref. [46]). Further,
the presence of baryons contracts the inner ∼10 kpc of
the profile away from the canonical Navarro, Frenk, and
White (NFW) DM distribution [47, 48], so that there is
an enhancement of the DM density at smaller radii ver-
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sus the NFW expectation [49–54], though cores could de-
velop on top of this contraction at radii <∼ 2 kpc [55–58].
For example, in Milky Way analogue halos within the
Fire-2 simulations the DM-only and hydrodynamic sim-
ulations produce DM density profiles that agree within
∼25% at 10 kpc, but with baryons the density profiles
are typically around twice as large as the NFW DM-only
expectation at distances ∼1 kpc away from the GC [53].
To be conservative we assume the canonical NFW den-
sity profile for all radii, though in the SM we discuss how
our results change for alternate density profiles.

The NFW profile is specified by a characteristic density
ρ0 and a scale radius rs: ρDM(r) = ρ0/(r/rs)/(1+r/rs)

2.
We use the recent results from Cautun et al. [59], who
combined Gaia DR2 Galactic rotation curve data [60]
with total mass estimates for the Galaxy from satellite
observations [61, 62]. These data imply, in the context of
the NFW model, a virial halo mass MDM

200 = 0.82+0.09
−0.18 ×

1012 M� and a concentration c = r200/rs = 13.31+3.60
−2.68,

with a non-trivial covariance between MDM
200 and c [59]

such that lower concentrations prefer higher halo masses.
Within the 2D 68% containment region for MDM

200 and c
quoted in Ref. [59], the lowest DM density at r ≈ 0.5 kpc,
and thus the most conservative profile for the present
analysis, is obtained for ρ0 = 6.6 × 106 M�/kpc3 and
rs = 19.1 kpc. We adopt these values for our fiducial
analysis. With our choice of NFW DM parameters the
local DM density, at the solar radius, is ∼0.29 GeV/cm3

(cf. 0.4 GeV/cm3 used in Dessert et al. [7]) , which is
consistent with local measurements of the DM density
using the vertical motion of tracer stars perpendicular to
the Galactic plane, see, e.g., Refs. [63, 64].

We search for evidence of decaying DM in 10 eV inter-
vals in mass between 5−16 keV, masking 0.1 keV win-
dows around the locations of known lines, as indicated in
Fig. 3. We construct the joint likelihoods for the MOS
and PN data sets. We test and account for additional
background mismodeling in the MOS and PN analyses
by looking at the distribution of best-fit mixing angles in
the energy side-bands, using a technique similar to the
“spurious signal” used by ATLAS in the search for the
Higgs boson [42]. This procedure is described in the SM
and only has a small effect at low masses. We then com-
bine, at a given mass, the resulting MOS and PN profile
likelihoods to obtain the final profile likelihood used to
construct the limit and discovery significance shown in
Fig. 3. In that figure we show the one-sided 95% up-
per limit on sin2(2θ) in the upper panel, along with the
1 and 2σ expectations for the power-constrained upper
limit [65] under the null hypothesis (shaded green and
gold, respectively).

We find no evidence for decaying DM signals above our
pre-determined significance threshold of 5σ global signifi-
cance (corresponding to ∼6σ local significance), as shown
in the bottom panel. In that figure we compare our upper
limit to previous limits in the literature, adjusted to our
fiducial DM model for the Milky Way where appropriate.
In the context of the νMSM it is impossible to explain
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Figure 3. (Upper) The power-constrained 95% upper limit
on the DM lifetime from this work, presented in the context
of the sterile-neutrino mixing angle sin2(2θ), as a function
of the DM mass mχ. The dark grey regions correspond to
theoretical bounds for DM underproduction in the νMSM or
bounds from previous X-ray searches (1)–(5); see text for de-
tails. (Lower) The associated sign-weighted significance for
the UXL. Vertical grey regions denote background lines and
are at least partially masked. Green and gold regions in-
dicate 1/2σ expectations under the null hypothesis. These
results are shown in the context of more general DM models
as constraints on the DM lifetime in SM Fig. S6.

all of the observed DM in the region marked “DM un-
der production” because of the big bang nucleosynthesis
bound on the lepton chemical potential [30–32]. Note
that the νMSM also predicts that the DM becomes in-
creasingly warm for decreasing mχ, which leads to ten-
sion with Milky Way satellite galaxy counts for low mχ:
data from the Dark Energy Survey and other Galactic
satellite surveys [66] constrains mχ greater than ∼15–20
keV in the νMSM [67] (which can be strengthened further
when combined with strong lensing measurements [68]),
though we note that our results apply to more general
DM production mechanisms that do not predict modifi-
cations to small-scale structure. In Fig. 3 we also show
previous X-ray limits from (1) Dessert et al. [7], (2) a
Chandra search for DM decay in the Milky Way [69],
(3) a Chandra search for DM decay in M31 [14], and (4)
combined NuSTAR searches for DM decay: in the Milky
Way [22–24], the Bullet Cluster [25], and M31 [26]. Note
that the results from Milky Way searches have been ad-
justed to use the same DM density profile as in our fidu-
cial analysis.

Discussion. We find no significant evidence for decay-
ing DM, which leads us to set some of the strongest con-
straints to-date on the DM lifetime. We confirm the re-
sults of Dessert et al. [7] for the non-observation of a DM
decay line near 3.5 keV using a more robust and flexible
analysis strategy, leaving little room for a decaying DM
explanation of the previously-observed 3.5 keV anoma-
lies [8–12]. (See the SM for further discussion.)
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Given the data volume incorporated into this analysis
it is unlikely that further analyses of XMM-Newton data,
or Chandra data, could produce qualitatively stronger re-
sults on the DM lifetime in the mass range considered
here. However, the approach taken in this work may
lead to a powerful advancement in discovery power with
future data sets from surveys such as those by the up-
coming Athena [70] and XRISM [71] telescopes. A com-
bination of the data collected by those missions and the
analysis framework introduced in this work may lead to
the discovery of decaying DM in the few-keV mass range
at lifetimes beyond those probed in this work.
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