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In common fluids, viscosity is associated with dissipation. However, when time-reversal-symmetry
is broken a new type of nondissipative ‘viscosity’ emerges. Recent theories and experiments on
classical 2D systems with active spinning particles have heightened interest in odd viscosity, but
a microscopic theory for it in active materials is still absent. Here we present such first-principles
microscopic Hamiltonian theory, valid for both 2D and 3D, showing that odd viscosity is present
in any system, even at zero temperature, with globally or locally aligned spinning components.
Our work substantially extends the applicability of odd viscosity into 3D fluids, and specifically to
internally driven active materials, such as living matter (e.g., actomyosin gels). We find intriguing
3D effects of odd viscosity such as propagation of anisotropic bulk shear waves and breakdown of
Bernoulli’s principle.

Active materials are composed of many components
that convert energy from their environment into directed
mechanical motion. Time reversal symmetry (TRS) is
thus locally broken leading to novel phenomena such as
motility-induced phase separation [1], giant density fluc-
tuations [2, 3], and entropy production in the (nonequi-
librium) steady state [4, 5]. Examples of active matter
are abundant and range from living matter such as bacte-
ria [6, 7], cells [8, 9], actomyosin networks [3, 10, 11], and
bird flocks [12] to driven Janus particles [13, 14], colloidal
rollers [15, 16], and macroscale driven chiral rods [17].

One of the striking phenomena arising from broken
TRS is the possible appearance of a so-called odd or Hall
viscosity. In general the viscosity, ηijkl, relates stress, σij ,
to deformation rate, ∇lvk. When TRS holds, Onsager
reciprocal relations (ORR) [18–20] for equilibrium flu-
ids require that the standard dissipative viscosity tensor
ηeijkl be even under time reversal (TR) and under the in-
terchange ij ↔ kl. However, when TRS is broken, ORR
predict an additional ‘odd viscosity’ (OV) that is odd un-
der both TR and interchange of ij and kl: ηoijkl = −ηoklij .
This odd viscosity is nondissipative and does not produce
entropy or heat. Hence, it should be present even in a
purely nondissipative Hamiltonian system [21].

Odd viscosity, often called gyro viscosity, has been
studied for some time in gases [22] and plasmas in a
magnetic field [23, 24], and in superfluid He3 [25]. It
was first discussed by Avron and co-workers in the con-
text of quantum-Hall fluids [26] and hypothetical 2D odd
fluids [27] in which OV is compatible with rotational
isotropy. Subsequently, the effects of OV in quantum-
Hall fluids were thoroughly investigated [28–32]. Recent
research has paid much less attention to 3D systems.

The fact that TRS is inherently broken in active mat-
ter inspired recent investigations of OV in classical ac-
tive materials [17, 33–37], all of which focused on 2D
fluids. Most of these studied the phenomenology of
OV, though Ref. [33] derives the OV from an assumed
hydrodynamic action and Ref. [38] presents a semi-
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Figure 1. Schematic of our model system. Each molecule with
CM at rα (large blue spheres) is composed of many point-like
particles (small black spheres) located at rαµ with mass mαµ

and momentum pαµ. Each molecule has the same angular mo-
mentum `α, which could be a consequence of e.g. an external
field. The angular momentum breaks rotational symmetry.

microscopic theory for 2D active chiral fluids in which
OV is found numerically using Langevin dynamics simu-
lations. Odd viscosity has also been experimentally con-
firmed in 2D [39], verifying the existence of unidirectional
edge-states [35, 40].

In this paper we present a first-principles microscopic
Hamiltonian theory for odd viscosity in both 2D and 3D
using the Poisson-Bracket (PB) approach [41–43]. Our
theory, valid even at zero temperature, suggests that any
system with globally or locally aligned spinning compo-
nents has global (or local) OV arising from kinetic en-
ergy alone (other contributions are possible). We dis-
cuss some consequences of OV in 3D fluids, including
the breakdown of Bernoulli’s principle and the existence
of anisotropically propagating bulk transverse velocity
waves. We further show that OV should be present in
many active matter systems, including 3D ones. Specif-
ically, we expect to find signatures of OV in swimming
bacteria and actomyosin networks.

We view a fluid as a large collection of particles (rigid
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molecules), with center-of-mass (CM) position rα, each
composed of multiple sub-particles (atoms) with mass
mαµ and momentum pαµ located at rαµ, Fig. 1. The
total momentum density is ĝ(r) =

∑
αµ pαµδ (r− rαµ),

which, when coarse-grained, becomes [44, 45]

g(r) = gc +
1

2
∇× ` , (1)

where gc = ρvc is the CM momentum density, ρ the
mass density, vc the CM velocity, and `(r) = I ·Ω is the
angular-momentum density of spinning particles, where
I is the moment-of-inertia density and Ω is the rotation-
rate vector. Because by definition ` = 0 for point-like
particles, we necessarily consider complex particles. Al-
though ` affects local momentum both in the bulk and on
the surface, it does not contribute to the total momen-
tum because

∫
dr∇×` = 0. It does, however, contribute

to the total angular momentum, L =
∫

dr (r× gc + `).
Like a magnetic field, ` is a pseudovector that is even
under parity (P) and odd under TR.

Balance of angular momentum implies that the
stress tensor σ associated with g can always be sym-
metrized [45]. Then, the viscosity ηijkl is invariant under
the exchanges i ↔ j and k ↔ l. On the other hand, gc

does not count all momentum, and its stress tensor σc
can have antisymmetric contributions. As shown below,
a ‘proper’ OV (obeying ORR) appears in σ, while σc
contains only part of it.

In writing (1) we assume the system is structurally
isotropic. However, the presence of ` breaks rotational
invariance. The essential features of OV are seen for a
purely kinetic Hamiltonian, which is written within our
model after coarse graining [44] (full coarse-graining de-
tails will be shown elsewhere [46]) as [47].

H =

∫
dr

g2

2ρ
=

∫
dr

[
(gc)2

2ρ
+ ` · ωc

]
, (2)

where ωc = 1
2∇ × vc is half the fluid vorticity and g =

ρv with v the fluid velocity. Note that in the second
equality we dropped a non-hydrodynamic term ∼ (∇ ×
`)2. Although this Hamiltonian is standard in terms of
g, it is peculiar in terms of gc, where the second term
couples angular momentum density and vorticity. This
term was added ad-hoc (with opposite sign) in [33, 48] to
a hydrodynamic action and was crucial in deriving the
OV.

As detailed in [44], using the PBs [49]

{gci (r), ρ(r′)} = ρ(r)∇iδ(r′ − r) ,

{gci (r), gcj(r
′)} = gci (r

′)∇jδ(r− r′)−∇′i
[
gcj(r

′)δ(r− r′)
]
,

{`i(r), `j(r
′)} = −εijk`k(r)δ(r− r′) ,

{`i(r), gcj(r
′)} = `i(r

′)∇jδ(r− r′) , (3)

give the nondissipative part of the total momentum dy-
namics, which satisfies ġi +∇j (vjgi) = ∇jσij . Including

dissipation, the complete stress tensor reads

σij = −Pδij +
(
ηeijkl + ηoijkl

)
∇lvk , (4)

with P the hydrostatic (thermodynamic) pressure. When
anisotropic dissipative terms associated with ` are ig-
nored, ηeijkl = λδijδkl + η (δikδjl + δjkδil), where λ and η
are constants [44]. The odd viscosity,

ηoijkl = −1

4
`n (εjlnδik + εilnδjk + εiknδjl + εjknδil) , (5)

naturally emerges from Eqs. (2)-(3), revealing its nondis-
sipative nature. ` can be a function of space and time
to create “localized” OV [50]. When ` is constant we get
Onsager’s OV, where ` plays the role of magnetic fields in
plasmas [23, 24]. The 2D OV [27, 33] follows from Eq. (5)
by writing ` = `ẑ (for a fluid in the xy plane), thereby
converting the Levi-Civita tensor to εij = εijz. Remark-
ably, unlike magnetic field in plasmas, this result is purely
mechanical and does not require thermodynamic equilib-
rium or statistical mechanics.

We continue with some phenomenological conse-
quences of OV in 3D. We focus, for simplicity, on the
case of constant (in space and time) `, which may
originate in external driving as described in [44] and
Refs. [17, 33, 51]), and experimentally realized in 2D
“fluid” metamaterials [17, 39]. The ‘odd’ Navier-Stokes
equation (NSE), Eq. (4), then reads

ġi +∇j (vjgi) = −∇iP̃ + η∇2vi +
1

2
` · ∇ωi

− 1

2
εikn`n∇k∇ · v , (6)

with P̃ ≡ P − (λ+ η)∇ · v + ` · ω being the mechanical
pressure (diagonal part of the stress) and ω = 1

2∇×v. To
investigate the mode structure we linearize Eq. (6) and
the continuity equation, ρ̇+∇·(ρv) = 0, and use Fourier-
Transform [v, δρ] =

∫
dk

(2π)3 [ṽ, δρ̃] ei(k·r−st) to obtain:
s+ iνk2 −i˜̀kk‖ 2i˜̀kk⊥ 0

i˜̀kk‖ s+ iνk2 0 0

−2i˜̀kk⊥ 0 s+ iνLk
2 −kc

0 0 −kc s



ṽ1
ṽ2
ṽL
h̃

 = 0 . (7)

Here ν ≡ η/ρ0, νL ≡ 2ν + λ/ρ0, ˜̀≡ `/(4ρ0), ` = `ẑ, and
h = δρ/(cρ0) where ρ = ρ0 + δρ and c is the sound speed
(c2 = ∂P/∂ρ). We further define v1,2 ≡ v · ê1,2 and vL ≡
v · k̂, where k̂ = (kx, ky, kz)/k, ê1 = (−ky, kx, 0)/k⊥, and
ê2 = (−kxkz,−kykz, k2⊥)/(kk⊥) are a set of orthonormal
vectors with k =

√
k2, k⊥ =

√
k2x + k2y, and k‖ = k · `/`.

When dissipation (ν, νL) is negligible, the matrix in
Eq. (7) is Hermitian, with real eigenvalues, and corre-
sponding orthogonal eigenvectors. Hence, there are no in-
stabilities and novel ‘odd’ mechanical waves always prop-
agate. The full solution for the inviscid case can be found
in [44] (Eq. (81)). Figure 2 presents a polar plot of the
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‘odd’ excitation frequencies s± for various ˜̀. We find that
s− (s+) reaches its maximal value for α = 0 (α = 45◦),
where `·k = cosα. These modes are always admixture of
transverse (T) and longitudinal (L) modes, except when
α = 0, in which case, s+ (s−) is the L mode for k ˜̀< c
(k ˜̀> c).

The upper left (lower right) 2× 2 submatrix of Eq. (7)
deals with transverse (longitudinal) variables only, where
2˜̀kk⊥ couples the two. The dimensionless measure of
this quantity is g = 2˜̀k⊥/c, which becomes arbitrarily
small as k⊥ becomes less than c/(2˜̀). Thus, in the hydro-
dynamic limit, T and L modes decouple. The frequencies
with lowest-order coupling corrections are

sT = (±˜̀kk‖ − iνk2)(1− 2˜̀2k2⊥/c
2) (8)

sL = ±ck

(
1 + 2

˜̀2k2⊥
c2
− 1

8

νLk
2

c2

)
− 1

2
iνLk

2 , (9)

and the associated eigenvectors [~v = (v1, v2, vL, h)]
to lowest order in g and gν = kνL/c are: ~vL =
(∓ig, 0, 1,±1 + igν/2) and ~vT = (1,∓i, 0,−ig). As ex-
pected [27], the transverse polarizations are purely circu-
lar in the g → 0 limit. When dissipative viscosities are
nonzero, the transverse-mode frequency becomes purely
diffusive for k‖ = 0. A detailed analysis of the general
case with arbitrary k and the associated phase diagram
showing regions with diffusing and propagating modes is
deferred to [44].

It is instructive to see how breaking TRS and parity
by ` affects normal modes and field couplings. Define the
signature of a field to be (TR,P). v1 and vL have sig-
nature (−,+), v2 (−,−), and ˜̀ (−,+). Thus, ˜̀kk‖ with
signature (−,−) couples v̇1 to v2, creating a propagating
transverse mode, and ˜̀kk⊥ with signature (−,+) couples
v̇1 to vL, thus mixing longitudinal and transverse compo-
nents. The transverse v1−v2 block in Eq. (7) is similar to
the equation for magnons in ferromagnets [52] with mag-
netization M = (Mx,My,Mz) with signature (−,+). Mx

and My play the role of v1 and v2, and Mz the role of ˜̀.
The magnon has an isotropic, rather than an anisotropic,
dispersion relation ω ∝ k2, reflecting the fact that in the
absence of spin-orbit couplings M rotates under a differ-
ent group than spatial points.

An important and useful simplification of the odd NSE
(Eq. (6)) is its incompressible limit, ∇ · v = 0:

ġi +∇j (vjgi) = −∇iP̃ + η∇2vi +
1

2
` · ∇ωi , (10)

where now P̃ ≡ P + ` · ω. Notice that in 2D the last
term vanishes, and because P̃ is not a state variable but
rather is obtained from the incompressibility constraint,
the (bulk) flow is not affected by OV [34]. However, this
is not the case in 3D, thus one should expect very dif-
ferent phenomenology from that of 2D, even for incom-
pressible fluid.
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Figure 2. A polar plot of the two normalized ‘odd’ excitations
as function of the angle (α) between ` and k. Black lines
(reverse triangle for s− and circles for s+) are for k ˜̀/c = 0.7,
blue lines (plus for s− and asterisk for s+) are for k ˜̀/c =
1, and the red lines (triangles for s− and squares for s+)
are for k ˜̀/c = 1.3. These anisotropic excitations are similar
to those found in columnar liquid crystals [53] and nematic
elastomers [54].

In order to understand the incompressible limit it is
useful to examine the longitudinal equation. The latter
is obtained by taking the divergence Eq. (6) and using
the continuity equation:[

∂2t −
λ+ 2η

ρ0
∇2∂t

]
δρ−∇2 (P + ` · ω) = 0 . (11)

In normal fluids (` = 0), incompressibility is attained by
setting δρ = 0, implying that ∇2P = 0. This constraint
is not affected by transverse diffusion modes or by local
vorticity. In the present case, the constraint δρ = 0 im-
plies that ∇2(P + ` · ω) = 0. But in the presence of a
transverse wave, in which `·ω is nonzero, P must undergo
a compensating change, which normally means that δρ
must do so as well. The resolution requires consideration
of the limit c→∞. The eigenvectors ~vT and ~vL following
Eq. (9) reveal that δρ = −`·ω/c2, which satisfies Eq. (11)
for c → ∞ [44]. Because δρ is formally zero, but ∇2P
is not, we could say that a transverse wave produces a
(thermodynamic) pressure wave, but not a density wave.
Note that although P oscillates, the experimentally ac-
cessible P̃ does not. This shows the crucial difference
between these two definitions of pressure.

We continue by examining the validity of Bernoulli’s
principle in odd fluids. Consider an incompressible, in-
viscid (η = 0) odd fluid. In steady-state, multiplying
Eq. (10) by v gives

(v · ∇)

(
P̃

ρ
+

1

2
v2

)
=

1

2ρ
vi (` ·∇)ωi . (12)

As in 2D, the mechanical pressure P̃ takes the place of the
thermodynamic pressure P . In 2D, the right-hand-side
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(RHS) of Eq. (12) vanishes and Bernoulli’s principle, in
which P̃+ 1

2v
2 is constant along a streamline, is recovered.

Furthermore, in 2D the vorticity is conserved along a
streamline [55], and thus Bernoulli’s principle for P is
also restored [27]. In 3D the RHS does not generally
vanishes, therefore, Bernoulli’s principle is not valid for
‘odd’ fluids in 3D. Similarly, we observe the breakdown
of Kelvin’s circulation theory in 3D odd fluids [44], and
expect to find significant effects on lift and the Magnus
effect.

So far we have not discussed the origin of a non-
vanishing angular momentum, which requires discussing
the dynamics of `. The PB approach along with intro-
duction of a torque density τ (r, t) [56], provides the dy-
namics’ nondissipative part [44]. Adding a dissipative
term −Γij(Ωj−ωcj) [19, 49] that provides preference for a
dissipation-free steady-state in which Ω = ωc completes
the equation:

˙̀
i(r) +∇j (`ivj) = εijkωj`k − Γ (Ωi − ωi) + τi , (13)

where a non-hydrodynamic term ∼ ∇2` was neglected,
and we set for simplicity Γij = Γδij . The 2D version
of Eq. (13), in which the first term of the RHS van-
ishes, was first suggested in [17] and was used extensively
since [19, 20, 33, 51]. Both TRS and parity are broken
by `, and the presence of τ adds an extra term 1

2εijkτk
to σij [57], giving ` a non-random value, ` ' I · τ/Γ
in the hydrodynamic limit (see [44] Eq. (42)) leading to
the appearance of OV, Eq. (5). When τ = 0, Ω relaxes
in microscopic times to a function of ω, which rapidly
vanishes as the fluid approaches equilibrium.

Equation (4) gives the dynamics of g, for which a sym-
metric stress tensor can always be found (up to 1

2εijkτk
that appears in the presence of body torques). The dy-
namics of gc assumes a similar form [44], ġci+∇j

(
vcjg

c
i

)
=

∇jσcij , but with

σcij = −Pδij +

[
ηeijkl −

1

2
`nεjknδil

]
∇lvck

− 1

2
vci (∇× `)j +

Γ

2
εijk (Ωk − ωck) , (14)

that has an antisymmetric dissipative part to ensure con-
servation of angular momentum when τ = 0, and both
symmetric and antisymmetric nondissipative parts, but
only one part of Onsager’s OV (Eq. (5)). This contrasts
with current literature [33, 38, 40] in which the CM stress
tensor σc is assumed to include both the ‘proper’ OV and
the antisymmetric dissipative term [58].

In [44] we show that after integrating out Ω, the CM
stress tensor has the proper Onsager OV, terms propor-
tional to ∇ × `, and an additional nondissipative anti-
symmetric viscosity contribution 1

2`kεijk∇ · v. The lat-
ter violates ORR and implies that ˙̀ 6= 0 (see [44]). The
corollary is that even after relaxation of Ω, the CM de-
scription cannot properly describe a system with ` 6= 0,

acto
myosin

bacte
ria

torque dipole

𝝉

𝝉

Figure 3. Illustration of a fluid of torque dipoles that shows
inhomogeneous OV. On the right - torque dipole as a model
for toque exerted by bacteria (where its head and flagellar are
rotating in opposite directions) and for a myosin twisting two
actin filaments [19].

because it does not conform with the balance of angular
momentum (an exception is a fluid of constant density).

Although we explore in detail the constant ` case, our
framework does not restrict ` to be constant in space or
time. In fact, in internally driven active materials (such
as all natural active materials) the total active torque
must vanish [19], implying that τ is a divergence of some
quantity. For example, in an isotropic active gel (e.g.
actomyosin gel) τ = τ̃∇ρ where τ̃ is a pseudoscalar (see
derivation in [44] Sec. V). Therefore, we expect to have
numerous realizations of 3D OV ranging from swimming
bacteria [59] and actomyosin networks [19] to swimming
microrobots (see Fig. 3).

We have presented a microscopic Hamiltonian theory
for the appearance of odd viscosity in active fluids. Being
a Hamiltonian theory, no dissipation is required to obtain
the OV terms. Our central result is an equation of mo-
tion for the total momentum density of non-interacting
spinning particles that is valid for arbitrary local values
of the angular momentum density `. This equation,
which is the analogue of Bloch equations for magnetiza-
tion, yields the OV predicted by Onsager. Interactions
among particles, which we do not consider, modify the
OV value but not its form.

Our work considerably extends the applicability of OV
into 3D systems and specifically shows its relevance in
biological realizations and systems in which torques are
generated internally. Examples for such biological real-
izations range from bacterial suspensions to actomyosin
networks, and may even be present in active biopolymer
networks without motors [60] where filaments chirality
couples force and twist. It is our hope this work will
promote a variety of studies on odd viscosity in 3D sys-
tems, from ferronematics to active gels. For instance, it
would be interesting to investigate the appearance of odd
viscosity in the presence of nematic or polar order.
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