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Abstract

Low-dimensional excitonic materials have inspired much interest owing to their novel physical

and technological prospects. In particular, those with strong in-plane anisotropy are among the

most intriguing but short of general analyses. We establish the universal functional form of the

anisotropic dispersion in the small k limit for 2D dipolar excitonic systems. While the energy is

linearly dispersed in the direction parallel to the dipole in-plane, the perpendicular direction is

dispersionless up to linear order, which can be explained by the quantum interference effect of the

interaction among the constituents of 1D subsystems. The anisotropic dispersion results in a E∼0.5

scaling of the system density of states and predicts unique spectroscopic signatures including: (1)

disorder-induced absorption linewidth, W (σ) ∼ σ2.8, with σ the disorder strength, (2) temperature

dependent absorption linewidth, W (T ) ∼ T s+1.5, with s the exponent of the environment spectral

density, and (3) the out-of-plane angular θ dependence of the peak splittings in absorption spectra,

∆E(θ) ∝ sin2 θ. These predictions are confirmed quantitatively with numerical simulations of

molecular thin films and tubules.
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Introduction.—The discovery of graphene heralded the emergence of a plethora of novel

two-dimensional (2D) materials with wide ranging exotic properties that attract interests

of both fundamental physics and technological prospects.[1, 2] Apart from the inorganic 2D

materials,[3–8] organic excitonic systems possess distinct advantages with high tunability

and low processing cost.[9–16] Generically speaking, these systems are particularly inter-

esting owing to the incommensurability essential to 2D excitonic systems with anisotropic

dipolar interactions is nonexistent in their 1D counterparts where the signs of the couplings

are by construct homogeneous.[17, 18] These characteristics can be found not only in dipolar

excitonic materials, which is the main focus of this Letter, but also other systems such as

optical lattices of two-level atoms[19], trapped ions,[20] or Rydberg gas.[21]

As the combination of the reduced dimensionality, anisotropy, and long-range interac-

tions leads to burgeoning active research, it also poses a challenge. In fact, most of the

existing theoretical analyses are restricted to limiting cases such as nearest-neighbor (NN)

or isotropic r−3 couplings.[22–25] On the other hand, while computational studies are ca-

pable of revealing physical properties within specific material systems,[26, 27] obtaining

fundamental insights universally applicable remains difficult. These results understandably

have limited applicability, and a general treatment of anisotropic 2D systems is lacking.

In this Letter we aim at filling in this gap by providing a scaling analysis of anisotropic

2D dipolar excitonic systems. Here, we focus on the long-range contribution to the dipole

coupling and derive scaling relations in the low quasimomentum regime of the exciton

dispersion. This scaling regime reflects coarse-grained measures of the transition dipole,

consequently the resulting spectroscopic signatures are universal regardless of atomistic de-

tails. We further investigate the exciton density of states (DOS) at low energy and examine

its spectroscopic consequences that can be readily tested experimentally. To corroborate
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the universality of our predictions, we also compare with realistic models of molecular films

and tubules and find quantitative agreement.

Continuum description of 2D excitonic systems.—We consider a translationally invariant

2D lattice, as shown in Fig. 1(a), where at each site ~r = r(cosφr, sinφr, 0) we assign a

dipole ~µr = µ0(cos θµ cosφµ, cos θµ sinφµ, sin θµ). The interaction between the origin and an

arbitrary site is given by J(~r) =
µ20
r3

[1− 3 sin2 θµ cos(φr − φµ)]. Applying the Bloch theorem,

the energy dispersion relation reads

E(~k) = E0 +
∑
~n6=0

J(~rn)ei
~k·~rn , (1)

where ~k is the quasimomentum of the corresponding wavefunction. For isotropic NN-coupled

square lattices, this gives rise to the conventional cosine dispersion and a constant DOS.

Taking the continuum limit of Eq. (1), which becomes exact in the limit of r →∞, and

assuming a circular cutoff at r = rc, represented as the shaded region in Fig. 1(a), we obtain

Ec(~k) =
1

a0

∫
d~rei

~k·~rJ(~r)

=
µ2
0

a0

∫ ∞
rc

dr

r2

∫ 2π

0

dφr · eikr cos(φk−φr)[1− 3 sin2 θµ cos2(φr − φµ)]

=
µ2
0

a0

[(
1− 3 sin2 θµ sin2 ∆k

)
I0(k)− 3 sin2 θµ

(
1− 2 sin2 ∆k

)
I2(k)

]
(2)

where a0 is the unit cell area, ~k = k(cosφk, sinφk, 0), and ∆k = φµ−φk is the angle between

vectors ~k and ~µ. Here rc serves as an adjustable parameter on the order of πr2c ≈ a0.

Its specific value depends on the lattice configuration, dipole orientation, and the form

of excitonic coupling, J(~r), especially in the short-range regime. In the last equation we

integrate over φr and obtain the closed form expressions of I0(k) and I2(k) in terms of
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Bessel functions, as given in S1 of Supplemental Material (SM). Eq. (2) can be used to

numerically calculate the continuum model exactly, see S3 of SM.

We note that it is precisely the long-range nature of the dipolar coupling that makes

the continuum treatment feasible, and thus one should focus on the small k regime and the

scaling properties therein. A series expansion of Eq. (2) up to the order of k2 yields

Ec(~k) = Ē
{(

2− 3 sin2 θµ
)

+[
−2 + 2 sin2 θµ(2− sin2 ∆k)

]
· |krc|+[

1

2
+

3 sin2 θµ
8

(
−3 + 2 sin2 ∆k

)]
· |krc|2

}
+O(k4) (3)

where Ē =
πµ20
a0rc

. It can be shown that all odd-order terms vanish except for the linear one,

such that Eq. (3) is accurate up to k3 compared to Eq. (2). Eq. (3) is the main result of

the current contribution.[28] We shall focus on discussing the implications of Eq. (3) for the

in-plane dipole configuration (θµ = π/2) in the following.

Surprisingly, the leading term in Eq. (3) is linear. This can be understood in terms

of coherent summation of the dipole vectors resulting in constructive interference in the

direction parallel to the dipole and destructive interference in the perpendicular direction,

elaborated in the next section. We note that similar linear dispersion has been recently

reported in monolayer MoS2 and is attributed to a different type of physics associated with

the inter- and intra-valley exchange interactions.[29–31] The quadratic term is similar to the

standard dispersion of NN-coupled models and serves as a background that is more isotropic

in comparison.[32]

We note that the continuum model does not account for the discrete contribution in

Eq. (1), which is dominantly short-ranged. As such, the continuum model is universal and
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does not depend on the discrete lattice parameters such as the primitive vectors of the

underlying Bravais lattice or other atomistic details. This is especially true for the linear

term since the leading correction from the short-range contribution omitted here is k2.[33]

We confirm this by comparing the numerically exact dispersion of two representative square

lattices with different φµ’s, shown in Fig.1(c), with that of Eq. (3), Fig.1(d). The full

dispersion [Fig.1(c), middle column] reflects the change of the dipole lattice geometry but

their low-k counterparts [Fig.1(c), right column] agree well with Eq. (3).

Quantum Interference of Constituent 1D Strips.— A simple physical understanding can

be achieved by adopting an intuitive approach to interpreting the Fourier sum Eq. (1). Here

the dispersion E(~k) is obtained by first decomposing a 2D lattice into an array of 1D strips

along the direction perpendicular to ~k, then Fourier transforming the coherent couplings

between the strips along ~k.

1. Consider first the special case where ~k is parallel to ~µ, i.e. ∆k = 0. Essentially this

is equivalent to calculating the coherent coupling between 1D strips of perpendicular

dipoles, a configuration illustrated by taking φµ = π/2 in Fig. 1(b). In the continuum

limit, the magnitude of the coherent sum of such couplings is linearly proportional

to the length of the strips, and has a r−2 dependence on the inter-strip separation

r.[34] As a result, the leading contribution in the Fourier basis scales linear in k:

E(k) = 2
∫
dr cos(kr) · r−2 = 2k ·

∫
d(kr) cos(kr) · (kr)−2 ∝ k.

2. The other extreme case is ∆k = π/2, where ~k · ~µ = 0 and illustrated by taking

φµ = 0 in Fig. 1(b). In stark contrast, successive cancellation of aligned dipoles

leads to vanishing dipole strength of the 1D strips and, thus, vanishing inter-strip

couplings.[34, 35] Consequently, the dispersion is flat to linear order in k.
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3. Generally speaking, for an arbitrary angle ∆k there is constructive interference between

the perpendicular components and destructive interference between the parallel ones.

This leads to the |~k| · cos2 ∆k term in Eq. (3), with derivation detailed in S2B of SM.

We emphasize that such effects disappear in the incoherent, classical limit, such as those

studied in the literature of Förster energy transfer, where dipole summation is on the inten-

sity level instead of the amplitude level and system anisotropy manifests only in terms of

multiplicative prefactors with the same scaling.[34, 36]

Universal scaling of density of states.— In order to connect from the universally scaled

exciton dispersion to many of the spectroscopic features discussed below we need to ascertain

the DOS near the bright state, particularly its scaling information when the bright state

is at the band edge, i.e. min[E(~k)] = E(0).[37] We note that the DOS of an isotropically

quadratic dispersion, e.g. that of a 2D NN-coupled lattice, has a constant scaling (E0).

Also, the DOS of a 2D isotropically linear dispersion scales linearly (E1). Consequently,

the anisotropic dispersion predicted by Eq. (2) leads to a DOS whose scaling is bounded by

these two extrema. In fact we find that Eq. (2) leads a E∼0.5 scaling of the DOS, as shown

in Fig. 2(a) where the power-law fit agrees quantitatively up to E − E(k = 0) ≈ 0.5Ē. An

approximate derivation of E∼0.5 from the anisotropic dispersion is provided in S4 in SM. In

Fig. 2(b) we show the fitted power-law exponent to the numerically calculated DOS of a

dipole square lattice as a function of φµ. The deviation from 0.5 in the φµ < 30◦ regime is

attributed to short-ranged discrete lattice contributions that dominate the large k regime

in the dispersion, whose energy overlaps with the small k regime when φµ is smaller. For

φµ > 30◦ the exponent converges to 0.5.[38]

Spectroscopic signatures I: Disorder and temperature scalings of absorption linewidth.—

For typical 2D excitonic systems, observables in the optical regime (k−1 ≥100 nm) retrieving
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FIG. 1. (a) A 2D square lattice of in-plane dipoles. (b) Two parallel chains of dipoles. (c) Left to

right: Square lattices with different dipole orientations (φµ = 0, π/8), their 2D dispersion contours

(k ≤ π
a ), and those zoomed in (k ≤ π

10a). The dashed lines indicate the (reciprocal) lattice vectors.

(d) Dispersion of the continuum model predicted by Eq. (3) with k ≤ π
10rc

and rc = a.

information are well described by the low k dispersion Eq. (3) and the corresponding E0.5

scaling DOS. We explore a few such observables in the following sections.

The influence of static disorder and thermal noise on the lineshape of excitonic systems in

the condensed phase can be cast in terms of the DOS close to the bright states in the pertur-

bative regime.[9, 18, 22, 40] Specifically, it can be shown analytically that a DOS(E) ∝ E0.5

scaling leads to a disorder-induced absorption width W (σ) ∝ σ3 using the coherent po-

tential approximation (CPA).[17, 41, 42] In Fig.3(a) we confirm the scaling by numerically
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FIG. 2. (a) The DOS from numerically evaluating Eq. (2) (circles), that of a φµ = π/4 square

lattice (squares), and a E0.50 power-law fit (line). (b) Power-law exponents fitted for the low-energy

DOS of square lattices with varying φµ. Only cases with the bright (k = 0) state close to band

edge are included.[39] The dashed line indicates the theoretical value 0.5.

computing the disorder-induced spectral width as a function of the strength of Gaussian un-

correlated site disorder.[22, 43] In both the weak (fully delocalized, motionally narrowed[44])

and the strong disorder (fully localized) regimes the width scales linearly, while in the in-

termediate regime we find W (σ) ∝ σ2.8. By numerically solving the self-consistent equation

of CPA with the dispersion Eq. (3) we also obtain a scaling of σ2.74 in agreement with both

the analytic CPA (σ3) and the exact (σ2.8) results, detailed in S5 of SM.

In addition to the disorder-induced absorption width, the E0.5 scaling of DOS also man-

ifests in the temperature dependent spectral lineshape, a thermal noise-induced effect.[45]

Utilizing the standard lineshape theory, Heijs et al. [9] quantitatively explained the power-

law temperature dependence of absorption width of linear PIC dye aggregates.[46, 47]

Recently, basing on the same level of theory, we extended the analysis to temperature-

dependent peak shift as a new means to characterize excitonic molecular solids.[18] Under

the fast bath assumption, i.e. the bath relaxation time is faster than the inverse temperature,
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one arrives at power-law T -dependence for the linewidth:

W (T ) =

∫
E′

DOS(E ′) · J (B)(|E ′ − E(0)|) · n̄(E ′ − E(0), T )

= W (0) + CW · T ds+s+1 (4)

where CW is a constant and n̄(E, T ) = (1−e−E/T )−1 is the Bose-Eistein distribution. ds and

s are the power-law exponents of the system DOS and the bath spectral density J (B)(ω),

respectively. For a cubic super-Ohmic bath, J (B)(ω) ∝ ωs with s = 3, we predict a T 4.5

dependence for 2D systems. In Fig. 3(b) we show the T -dependent linewidth of the φµ = π/4

square lattice. Both the disorder and the thermally induced absorption widths are in good

agreements with their theoretically predicted counterparts, shown in Fig. 3(c) as well as in

Fig. S7.

Spectroscopic signatures II: Absorption peak splittings.— The dispersion relation can be

probed by scattering experiments such as the electron energy-loss spectroscopy that has

become readily available for excitonic systems[48, 49], and more recently using twisted light

with designated orbital angular momenta exciton dispersions in the optical regime have also

been experimentally measured.[31] On the other hand, a direct application of Eq. (3) predicts

the energy gap spanned by the asymmetric lineshape of a transient absorption spectrum.[50]

This gap measures the energy difference between the transition from the ground state to

the one-particle bright state and that from the one-particle bright state to the two-particle

bright state.

Taking the usual assumption that the two-particle bright state is dominated by the state

|~kb〉 ⊗ |2~kb〉, the direct product of the one-particle bright state and the one-particle state of
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FIG. 3. Disorder- and thermally induced absorption linewidths. (a) Absorption linewidth as a

function of site disorder strength for a φµ = π/4 square lattice with 1600 sites. The solid and

dashed lines indicate the strong and the weak disorder limits and the dotted line is a σ2.8 fit to the

intermediate regime. (b) Absorption linewidth as a function of temperature of the same system as

in (a) coupled to a cubic super-Ohmic bath (dots) and its power-law fitting (line). (c) Power-law

exponents of disorder (squares) and thermally (circles) induced absorption linewidths as functions

of φµ for square lattices. The horizontal lines indicate theoretically predicted σ3 (dotted) and T 4.5

(dashed) scalings.

double quasimomentum,[51, 52] with the bright state wavevector ~kb = kb(− sinφµ, cosφµ),

i.e. perpendicular to the transition dipole moment. Ignoring two-exciton interactions, the

splitting between the two peaks is:

E(2~kb)− E(~kb) ≈ −2 + 2 sin2 θµ · (kbrc) (5)

obtained by truncating Eq. (3) to the linear order.

Similar techniques can also be applied to tubular systems, where a common example

are self-assembling amphiphilic dye molecules in solution.[53, 54] In this case the system

eigenstates can be labeled by (k‖, k⊥) denoting the quasimomenta along the axial and the
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circumferential directions, respectively.[54] The selection rule dictates that bright states are

those of (k‖, k⊥) = (0, 0) and (0,±1). By analogy to the 2D planar system, the energy

splitting between the two bright states to the linear order of k⊥ · rc can be written as

E(0,±1)− E(0, 0) =
2πµ2

0

ra0
sin2 β, (6)

where r is the tube radius and β is the angle between the in-plane transition dipole and the

tube axis, see inset of Fig.4. The detailed derivation and discussion of Eq. (6) is provided in

S8 and S9 of SM. As predicted by Eq. (6), the gap is positive for all configurations with in-

plane transition dipoles, i.e., the perpendicularly polarized peak is always higher in energy

than the parallel one. We note that similar results for the energy gap and scaling exponents

have been reported from numerical simulations of tubular systems.[17, 55] The agreement

between the 2D and tubular results is achieved only in the large radius limit, as tubular

systems exhibit a 1D to 2D transition with increasing radius (see S9 and S11).[53] Thus,

building on the anisotropic dispersion relation, we provide a systematic explanation of the

numerical results in both 2D and tubular structures.

Application to excitonic molecular films and tubules.—To corroborate our theoretical re-

sults and analysis including Eqs. (5) and (6), we compare with the numerically evaluated

exciton dispersions and the spectroscopic observables of model molecular films and tubules

consisting of C8S3 dyes.[18, 56] The superstructures of the model aggregates studied include

planar brick wall and helically symmetric tubular lattices with varying structural parame-

ters, see the insets of Fig. 4 (a) and (b) and S7 of SM. We further model the coupling matrix

element J(~rn) with increasing spatial resolution on the molecular transition dipole distribu-

tion: from simple dipole and extended dipole to transition charges, as detailed in S6 of SM.
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FIG. 4. (a) The transient absorption gap of 2D molecular films and (b) the energy splitting between

the perpendicular and the parallel-polarized absorption peaks of molecular tubules, compared to

the theoretical predictions Eqs. (5) and (6), respectively. The structure of C8S3 dye molecule is

shown in (a) and the arrow indicates the transition dipole direction of its lowest excited state. Here

rc = 5 Å and kb = 2 · 10−4Å−1, corresponding to peak absorption at 500 nm. Schematics of planar

and tubular aggregates with their structural parameters (lattice offset l for planes and helical pitch

angle β for tubes). We compare three different models of the excitonic coupling between two C8S3

molecules: simple dipole, extended dipole, and transition atomic charges. These models and the

construction of planar and tubular lattices are detailed in S6 and S7 of SM.

As these methods differ only in the short range, we predict that the scaling properties in the

small k regime discussed above hold true for numerical results calculated from any of them.

The quantitative agreements observed in Fig. 4(a) and (b) put Eq. (3) to a good test. Ad-

ditional examination of the power-law exponents of the DOS and T -dependent linewidth of

these systems also show excellent agreement with those predicted by the continuum model,

as discussed in S10 of SM, further substantiating the universality and applicability of the

present theory.[58]

Conclusion.—By taking the continuum limit of 2D excitonic systems, we obtained an an-

alytical expression of the anisotropic dispersions in the small k regime where the continuum

description is justified. We conclude that in this limit the exciton band scales linearly in the
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direction of the transition dipole and is dispersionless to linear order in the perpendicular

direction, a result that can be understood by the quantum interference effects of interacting

dipoles in 1D subsystems. Combining these features leads to the prediction of the E∼0.5

scaling of the 2D DOS near the bottom of the band and the explanation of a power-law dis-

order strength (W (σ) ∝ σ2.8) and temperature (W (T ) ∝ T s+1.5) dependence of absorption

linewidths, where s is the characteristic scaling exponent of the bath degrees of freedom.

Expressions with sin2 θµ dependence for the energy splitting observable in transient absorp-

tion experiment for planar 2D systems and the energy gap between the two bright states of

tubular systems are derived based on the anisotropic dispersion relation and can be directly

applied to analyzing a large class of molecular systems. Our results are universal for 2D

dipolar systems and provide a firm theoretical ground for understanding the photophysics

of low-dimensional excitonic systems.

This work is supported by the NSF (CHE 1800301 and CHE 1836913).
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