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We show that unconventional nematic superconductors with multi-component order parameter
in lattices with three-fold and six-fold rotational symmetries support a charge-4e vestigial super-
conducting phase above T.. The charge-4e state, which is a condensate of four-electron bound
states that preserve the rotational symmetry of the lattice, is nearly degenerate with a competing
vestigial nematic state, which is non-superconducting and breaks the rotational symmetry. This
robust result is the consequence of a hidden discrete symmetry in the Ginzburg-Landau theory,
which permutes quantities in the gauge sector and in the crystalline sector of the symmetry group.
We argue that random strain generally favors the charge-4e state over the nematic phase, as it acts
as a random-mass to the former but as a random-field to the latter. Thus, we propose that two-
dimensional inhomogeneous systems displaying nematic superconductivity, such as twisted bilayer
graphene, provide a promising platform to realize the elusive charge-4e superconducting phase.

The collective behavior of interacting

electrons in quantum materials can give rise to a plethora
of exotic phenomena. An interesting example is charge-
4e superconductivity [1-13], an intriguing macroscopic
quantum phenomena which was theoretically proposed
but is yet to be observed. In contrast to standard charge-
2e superconductors characterized by Cooper pairing, a
charge-4e superconductor is formed by the condensation
of four-electron bound states. Many basic properties of
this exotic state, such as whether its quasi-particle excita-
tion spectrum is gapless or gapped, remain under debate
[12].

One strategy to search for charge-4e superconductivity
is to look for systems that display two condensates, and
search for a stable state where pairs of Cooper pairs are
formed even in the absence of phase coherence among
the Cooper pairs. One widely explored option is the
so-called pair-density wave (PDW) state, in which the
Cooper pairs have a finite center-of-mass momentum [13].
An unidirectional PDW is described by two complex gap
functions A1q that have incommensurate ordering vec-
tors £Q. Charge-4e superconductivity, described by the
composite order parameter AQA_q, is a secondary order
that exists inside the PDW state. It has been proposed
that the PDW state can melt in two stages before reach-
ing the normal state [6], giving rise to an intermediate
state in which there is no PDW order, (A1q) = 0, but
there is charge-4e superconducting order, (AqA_q) # 0.
Such an intermediate phase is called a vestigial phase [14—
16], as it breaks a subset of the symmetries broken in the
primary PDW state. The main drawback of this interest-
ing idea is the fact that the occurrence of PDW states in
actual materials and in microscopic models seems to be
rather rare [13]. Thus, it is desirable to search for other
systems that may host vestigial charge-4e superconduc-
tivity.

In this paper, we show that nematic superconductors
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FIG. 1. A nematic superconducting state in a lattice with
three-fold or six-fold rotational symmetry (here, a honey-
comb lattice is shown) is described by a two-component order
parameter (A1, Az) = Ap (cosb, sinf), represented here by
bound states of electron pairs (red dots). The ellipses repre-
sent, schematically, different orientations #. Two competing
vestigial phases are supported: (a) a Potts-nematic phase and
(b) a charge-4e phase. In (a), the angle 6 associated with the
nematic director is fixed, breaking the three-fold rotational
symmetry. In (b), the three-fold rotational symmetry is pre-
served and a coherent state of bound states of four electrons
emerge. In both (a) and (b), (A;) = 0, i.e. charge-2e super-
conducting order is absent.

in hexagonal and trigonal lattices offer a promising alter-
native. A nematic superconductor breaks both the gauge
symmetry associated with the phase of the gap function
and the three-fold/six-fold rotational symmetry of the
lattice. Importantly, nematic superconductivity has been
experimentally observed in doped BisSes [17, 18] and in
twisted bilayer graphene [19], two systems whose lattices
have three-fold rotational symmetry. Superconducting
properties that do not respect the three-fold lattice sym-
metry were also observed in few-layer NbSeo, although it
is unclear whether this is a consequence of a nematic pair-



ing state [20, 21]. Unless finite tuning is invoked [22, 23],
nematic superconductivity is realized in systems where
the order parameter transforms as a multi-dimensional
irreducible representation of the relevant point group G
[19, 24-28]. Typical examples are two-dimensional repre-
sentations (A1, Ay) where Ay and As correspond to p,-
wave/p,-wave gaps or dg2_,2-wave/d,,-wave gaps. Inter-
estingly, it has been shown that a secondary composite
order parameter ® = (|A1|2 — \A2|2 ,—A1AS — ATAg),
corresponding to Potts-nematic order, can onset even
above the superconducting transition temperature 7T,
[26, 29].

Here, we show that the very same mechanism that fa-
vors a vestigial nematic phase also promotes a vestigial
charge-4e phase characterized by a non-zero composite
order parameter ¢ = A? + A2 | but (A;) = 0 (see Fig.
1). In particular, we find that the effective Ginzburg-
Landau theory obtained after integrating out the normal-
state superconducting fluctuations has the same form for
both the nematic order parameter ® and the charge-4e
order parameter ¢b. We show that this is a robust result
stemming from the existence of a linear transformation,
called a perfect shuffle permutation, that relates ® and
1 in the four-dimensional space spanned by A; and As.
Such a transformation effectively permutes quantities in
the “gauge sector” and in the “crystalline sector” of the
group U(1) ® G that defines the symmetry properties of
the system.

This result implies that there are actually two com-
peting vestigial phases that can onset before long-range
superconductivity sets in: nematic order, as studied pre-
viously [26, 29], and charge-4e superconductivity. While
additional terms in the superconducting free-energy can
favor either state, the coupling to random strain fun-
damentally alters the balance between them. This is be-
cause random strain acts as a random-field to ®, but as a
random-mass to 1. Consequently, random strain, intrin-
sically present in actual materials, is expected to suppress
Potts-nematic order much more strongly than charge-4e
order. We thus conclude that the most promising candi-
dates to realize vestigial charge-4e superconductivity are
relatively inhomogeneous nematic superconductors with
strong superconducting fluctuations, as in quasi-2D sys-
tems. This analysis thus suggests that twisted bilayer
graphene [30-38] offers a potentially viable platform to
realize this elusive state of matter.

Vestigial nematicity: the standard scenario. We con-
sider a nematic superconductor in a lattice with three-
fold or six-fold rotational symmetry, described by a two-
component order parameter (A, As). For concreteness,
hereafter we will focus on the case where the point group
of the lattice is Dg, and A = (Aq, Ag)T transforms as
the Fy irreducible representation (irrep), corresponding
to (dm2_y2, dxy)—wave gaps. Note, our results also ap-
ply to A transforming as two-dimensional E-like irreps

of Dg, D3, C3,, etc. The Ginzburg-Landau supercon-
ducting action expanded to fourth order in A is given by
[22, 26, 29, 39]:
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Here, Xi_jl (¢) is the inverse superconducting suscep-
tibility in Fourier space, whereas ug > 0 and ~ are
Ginzburg-Landau parameters. Furthermore, ¢ = (q, wy,)
and r = (r,7), where q is the momentum, w,, is the
bosonic Matsubara frequency, r is the position, and 7 is
the imaginary time. Note that S has an enlarged contin-
uous rotational symmetry Ay +iAy — T (A £iAy),
which is reduced to a discrete one when higher-order
terms are included, as we discuss later.

The superconducting ground state depends on ~: if
v < 0, the action is minimized by A = Ag (1, j:i)T, corre-
sponding to a time-reversal symmetry-breaking (TRSB)
superconductor that preserves the six-fold rotational
symmetry of the lattice. If v > 0, we obtain A =
Ay (cos 8, sin G)T, with arbitrary 6, corresponding to a
nematic pairing state, as it preserves time-reversal sym-
metry but lowers the six-fold rotational symmetry to
two-fold. It is convenient to construct the real-valued
composite order parameters ( = AfoYA and ® =
(ATO'ZA, —ATJIA), where o is a Pauli matrix that
acts on the two-dimensional subspace spanned by A
[16, 26, 29]. While ¢ transforms as the A irrep of Dg, and
is thus related to TRSB, ® transforms as the FEs irrep,
being related to six-fold rotational symmetry breaking.
Clearly, if the ground state is A = Ay (1, :l:i)T, ¢#0
and ® = 0, but if A = Ag(cos, sin@)T7 ¢ = 0 and
® #£ 0. The sign of v is ultimately determined by micro-
scopic considerations. While weak-coupling calculations
favor v < 0 [22, 28, 40], spin-orbit coupling or density-
wave/nematic fluctuations favor the nematic supercon-
ducting state [24, 25, 28, 41]. Hereafter, we will assume
one of these microscopic mechanisms as the source of
v > 0.

The nematic superconducting state supports a vesti-
gial nematic phase, i.e. a phase in which the composite
nematic order parameter is non-zero, (®) # 0, but su-
perconducting order is absent, (A) = 0 (see Fig. 1(a)).
To see this, we follow Ref. [16] and rewrite the quar-
tic terms in Eq. (1) in terms of the TRSB bilinear
¢ = AfoYA and the trivial bilinear A = Af6A as
SW =t [ A\24 2 [ (2. Here, 0¥ is the identity matrix.
Now, the Fierz identity Zu afjagl =200, — agjagl im-
plies a relationship between the bilinears, (2 = A2 — ®2.
As a result, the quartic term can be rewritten as S =
L[ A2—2 [ ®* where u = ug+ and, as defined above,
P = (91,P;) = (ATo*A, —AT6"A) is the nematic bi-



linear. Since v > 0 by assumption, we can perform
Hubbard-Stratonovich transformations to decouple the
quartic terms and obtain:

o2 A2
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Because the action is quadratic in A;, superconducting
fluctuations can be exactly integrated out in the normal
state, yielding an effective action for ® and A . Since
A does not break any symmetries, it is always non-zero
and simply renormalizes the static superconducting sus-
ceptibility. On the other hand, ® is only non-zero below
an onset temperature. A large-N calculation [42], as per-
formed in Ref. [29], indicates that (®) # 0 already above
T., implying that vestigial nematic order precedes the on-
set of superconductivity (see also the Supplementary Ma-
terial, SM [43]). Interestingly, a vestigial nematic phase
has been recently observed in doped BisSes [44, 45].

Competition between nematicity and charge-de super-
conductivity. We now show that there is a hidden symme-
try between the two-component real-valued nematic or-
der parameter ® and the complex bilinear 1) = A? + A3.
The latter, which is non-zero (zero) inside the nematic
(TRSB) superconducting state, breaks the U(1) gauge
symmetry and is precisely the charge-4e order parameter
(see Fig. 1(b)). To reveal this unexpected symmetry,
we construct complex bilinears out of the primary order
parameter A. Since the latter transforms as the irrep
I' = ™ ® By of the group U(1) ® Dg, we can write
it as a four-dimensional vector n = (A}, AY, AL, AT,
where the prime (double prime) denotes the real (imag-
inary) part. Then, the bilinears are generally given by
1T (0" ® 0™) n, where the first Pauli matrix (with Greek
superscript) in the Kronecker product o* ® o™ refers to
the subspace associated with the two-dimensional irrep
E; (dubbed the crystalline sector), whereas the second
Pauli matrix (with Latin superscript) refers to the sub-
space associated with the U(1) group (dubbed the gauge
sector). In this notation, the components of the nematic
bilinear become:

o, =nT (az ® 00) n
Py =-n" (6c"®c")n (3)
The other real bilinears are given by ( =

nt (0¥ ®0oY)n and A = nt (UO ® 00) 7. The charge-4e
bilinear ¥ = v’ + 41", on the other hand, is:

1/)/ nT (O,O ® O_Z) n
d)// "IT (JO ® O’w) n (4)

The key point is that, although the Kronecker prod-
uct (M ® N) is non-commutative, in the case where
M and N are square matrices it satisfies the property
(M ® N) = PT (N ® M) P, where P is the so-called per-
fect shuffle permutation matriz [46]. Here, due to the mi-
nus sign in the second equation of (3), a slightly modified
2 X 2 matrix P is needed:
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Physically, P permutes quantities from the crystalline
and the gauge sectors of the four-dimensional space
spanned by 7. Because P is an orthogonal matrix,
P~ = PT = P, upon performing the unitary trans-
formation n = Pn, we see that while the bilinears ¢ and
A remain invariant, (&1, ®2) — (¢',¢"), i.e. the nematic
bilinear is mapped onto the charge-4e bilinear. Conse-
quently, provided that the susceptibility in the quadratic
term of Eq. (1) is invariant under the linear transforma-
tion (5), the effective action in the normal state has the
same functional form with respect to either ®2 or |¢|>.
This is the case if we consider the standard susceptibility
expression xi_jl (q9) = (ro + q2) di;, where 1o oc T —T¢ g is
a tuning parameter and T, is the bare superconducting
transition temperature (see the SM).

This is the main result of our paper: for the Ginzburg-
Landau action in Eq. (1), which describes a nematic
superconducting ground state in a lattice with three-fold
or six-fold rotational symmetry, an instability towards
a vestigial nematic state at Them implies an instability
towards a vestigial charge-4e state at the same temper-
ature Tye = Them. This degeneracy between nematicity
and charge-4e superconductivity is rooted on the invari-
ance of the action upon a perfect shuffle that permutes
elements from the crystalline and the gauge sectors. As
we show in the SM, an explicit large-IV calculation shows
that, for anisotropic 2D systems, there is a wide parame-
ter regime for which Ty, = Them > T, implying that the
vestigial order emerges before the onset of superconduc-
tivity.

Selecting nematic or charge-4de order. We proceed to
discuss how the degeneracy between charge-4e and ne-
maticity is lifted. Focusing on finite-temperature phase
transitions, two additional terms in the superconduct-
ing action (1), not considered in the analysis above,
break the degeneracy in different ways. The first one
is a symmetry-allowed anisotropic term in Xi_jl(q) of the

form [(qz —q) (0" ® ao)ij + 2¢,qy (0" ® ao)ij}, with
coefficient k. Within large-N, this contribution gives

Tiae > Them, as we show in the SM. The second one is
the sixth-order term [39]:
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FIG. 2. Schematic phase diagram of the vestigial nematic
(transition temperature Them, green) and vestigial charge-de
(T4e, red) phases. Here, . represents the strength of strain
inhomogeneity. Because random strain couples as a random-
field to the nematic order parameter but as a random-mass to
the charge-4e order parameter, the former is expected to be
suppressed much more strongly than the latter. In the clean
system, AT = Them —T4e is positive because of the sixth-order
term in Eq. (6) that restricts the nematic director to three
directions (3-state Potts nematicity) and lifts the emergent
degeneracy between the two vestigial ordered phases. Note
that, as temperature is lowered, a superconducting transi-
tion is expected (not shown here). Whether charge-4e and
nematic orders can coexist in the overlapping region of the
phase diagram remains to be studied.
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Here, p is a coupling constant. Expressed in terms of
the nematic bilinear @®, it corresponds to a symmetry-
allowed cubic term in the nematic action proportional to
(fbi + <I>3_), where &1 = &1 £iP5 [24, 26, 29, 47, 48]. In
contrast, because 1 is complex, such a cubic term is not
allowed in the charge-4e action. This cubic term lowers
the symmetry of the nematic order parameter from con-
tinuous U(1) to discrete 3-state Potts, as it fixes the phase
of @4 to three possible values [26, 29, 47, 49]. Moreover,
it gives Them > Tye, as shown by a mean-field calculation
(see SM). Thus, depending on which of the effects asso-
ciated with the coupling constants x and p is stronger,
either a vestigial nematic or a vestigial charge-4e order
can be favored.

There is, however, an important ingredient missing in
our analysis that generally favors the charge-4e insta-
bility, thus opening a route to realize this exotic state
in realistic settings: the coupling to lattice degrees of
freedom. The latter are described by the strain tensor
gij = 3 (Ouj + 0ju;), with u denoting the lattice dis-
placement vector. Decomposing it in the irreps of the
Dg group, there are two relevant modes: the longitudi-
nal mode, which transforms as A1, €4 = €pa +€yy + €22,

and the shear mode, which transforms as Fs, eg =
(Exw — Eyy, —2€4y). As a result, the leading-order cou-
plings to the nematic and charge-de orders are given,
respectively, by the linear coupling e - ® and by the
quadratic coupling €4 |1/)|2. Thus, uniaxial strain acts
as a conjugate field to the nematic order parameter — a
well-known result [48] — whereas for the charge-4e order
parameter, it can only change the transition temperature,
similarly to hydrostatic pressure.

While strain can be externally applied, it is intrinsi-
cally present in materials as random strain caused by de-
fects arising in the crystal growth or device fabrication.
From the analysis above, it is clear that such random
strain acts as a random-field to the Potts-nematic order
parameter, but as a random-mass (also called random-
T.) to the charge-4e order parameter. This distinction
is very important, as random-field disorder is known
to be much more detrimental to long-order range or-
der than random-mass disorder. For the 3-state Potts
model, random-field is believed to completely kill the
Potts transition in two dimensions, and to suppress it
in three dimensions [50-52]. In the 2D case, the sit-
uation is similar to the random-field Ising model (see
e.g. [53]): random-strain breaks up the Potts-nematic or-
dered state into multiple domains, destroying long-range
order. The so-called breakup length L; characterizing
these domains depends on the width de of the distribu-
tion of random strains according to L ~ exp (B / 552)
(see SM for details). Consequently, in 2D, even an in-
finitesimal strain inhomogeneity de kills nematic order in
the thermodynamic limit. Thus, one generally expects
random strain to tilt the balance between the competing
vestigial charge-4e and nematic orders in favor of the for-
mer. The resulting schematic phase diagram is shown in
Fig. 2.

Ezxperimental consequences. Nematic superconductiv-
ity has been now established in doped BisSe; and in
twisted bilayer graphene (TBG) [17-19]. The latter
seems to be the most promising candidate to realize our
results. First, TBG displays 2D superconductivity, and
fluctuations are stronger in low-dimensional supercon-
ductors. Second, its superconducting state breaks three-
fold rotational symmetry in different directions over a
range of carrier concentrations [19], indicative of v > 0
in (1). Third, strain inhomogeneities in TBG appear to
be strong enough to suppress nematic order. A good
proxy for strain inhomogeneity is the width de of the
distribution of local strains. Because the moiré lattice
parameter ays of TBG is very large, a typical device has
a linear size L ~ 100aj,. This defines a critical inhomo-
geneity strength de. beyond which the breakup length
Ly, discussed above is smaller than L, and nematic order
is destroyed. We estimate de. =~ 0.27T./Cnem—el, Where
T. ~ 3 K is the typical TBG superconducting transition
temperature and (pem_e1 is the nemato-elastic coupling
(see SM). Experimental measurements of heterostrain in



TBG find local strain values as big as 0.4%, and a distri-
bution of strains with large standard deviations, of about
50% of the average value [54, 55]. This strain inhomo-
geneity is also reflected in a twist angle inhomogeneity,
which has been widely studied in TBG [56-59].

Therefore, as long as the nemato-elastic coupling is
not too small, inhomogeneous TBG devices in the dop-
ing range where nematic superconductivity is found are
promising candidates to realize charge-4e order. Note
that the mechanism proposed here is different from a
recent proposal for charge-de superconductivity based
on an approximate SU(4) symmetry of twisted bilayer
graphene [60]. To experimentally detect charge-4e order,
one would search for signatures of vortices with half quan-
tum flux (hc/4e), for instance in phase-sensitive experi-
ments involving Josephson junctions, such as the SQUID
loop proposed in Ref. [6]. Alternatively, atomically-
resolved shot noise measurements using Josephson scan-
ning tunneling microscopy, such as those performed in
Ref. [61], could also be used to directly detect the charge-
4e bound state.

Conclusions. In this paper, we showed that a nematic
superconductor in lattices with three-fold or six-fold
rotational symmetry supports competing nematic and
charge-4e vestigial orders. Such a competition is rooted
on a perfect shuffle permutation that transforms one or-
der parameter onto the other in the four-dimensional
space spanned by the multi-component superconducting
order parameter. We showed that random strain provides
the most promising tuning knob to favor charge-4e super-
conductivity over nematic order, due to the fact that it
acts as a random-field disorder to the latter, but as a
random-mass disorder to the latter. These results estab-
lish a new class of systems — nematic superconductors —
in which charge-4e order may be realized.
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