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We show that the widely used relaxation time approximation to the relativistic Boltzmann equa-
tion contains basic flaws, being incompatible with microscopic and macroscopic conservation laws
if the relaxation time depends on energy or general matching conditions are applied. We propose
a new approximation that fixes such fundamental issues and maintains the basic properties of the
linearized Boltzmann collision operator. We show how this correction affects transport coefficients,
such as the bulk viscosity and particle diffusion.

Introduction: In 1974, Anderson and Witting (AW) proposed the relaxation time approximation (RTA) to the rela-
tivistic Boltzmann equation [1], following the development already made in the non-relativistic case by Bhatnagar,
Gross and Krook [2] and Welander [3]. This approximation is used in several fields of physics and has been recently
employed to study the hydrodynamization of the matter produced in ultrarelativistic heavy-ion collisions [4–21]. In
particular, the divergence of the hydrodynamic gradient expansion was first shown in relativistic kinetic theory using
the relaxation time approximation [22, 23], in agreement with previous calculations at strong coupling [24, 25]. For
this reason, the relaxation time approximation has become instrumental in studying the microscopic foundations and
the domain of applicability of relativistic hydrodynamics.

In this letter we show that, despite its wide use, the approximation proposed in [1] contains basic flaws. It is
incompatible with microscopic and macroscopic conservation laws, which leads to several problems when modeling
relativistic gases using energy dependent relaxation times or general matching conditions. We propose a new relaxation
time approximation that fixes such fundamental issues and maintains the basic properties of the linearized Boltzmann
collision operator. We then demonstrate how such new formulation modifies well-known results for the transport
coefficients present in the first-order Chapman-Enskog expansion [26], such as the shear and bulk viscosities, as well
as the particle/heat diffusion coefficient. Our new approach provides a simple way to consistently investigate different
out of equilibrium definitions of the hydrodynamic fields in relativistic kinetic theory, which are not possible using
the standard AW formulation.

In this work we use the mostly minus convention for the metric, gµν = diag(1,−1,−1,−1), and natural units, i.e.
~ = c = kB = 1. Throughout the text, the spacetime dependence of some functions is omitted and the momentum
dependence is denoted by a sub-index, so that f(x, p) = fp.

Boltzmann equation: The relativistic Boltzmann equation is an integro-differential equation for the single-particle
momentum distribution function fp. For a one-component gas composed of classical particles1 that only undergo
elastic scattering, it reads

kµ∂µfk =

∫
dP dP ′ dK ′Wkk′↔pp′(fpfp′ − fkfk′) ≡ C [f ] , (1)

where the right-hand side displays the so-called collision term or collision integral, which can be readily seen as the
most nontrivial part of the Boltzmann equation [27]. Above, Wkk′↔pp′ is the transition rate, kµ =

(
k0,k

)
is the

4-momentum, and we introduced the Lorentz invariant integration measure dP ≡ d3p/
[
p0 (2π)

3
]
.

When considering systems that are close to local equilibrium, such as relativistic fluids, a common and useful
approximation is to linearize the collision integral around a local equilibrium state, f0k = exp (−βuµkµ + α), with β
being the inverse temperature, α the thermal potential, and uµ a normalized 4-velocity (i.e. uµu

µ = 1). In this case,
one expresses fk in terms of an equilibrium contribution and a nonequilibrium correction, φk, as

fk ≡ f0k (1 + φk) , (2)

and, neglecting terms that are quadratic in φk, one obtains the following approximate form for the Boltzmann equation

kµ∂µfk = L̂φk. (3)

1 For simplicity, here we only consider classical statistics. The inclusion of quantum statistics effects is straightforward.
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Here, we introduced the linearized collision operator, L̂, which is defined in the following way

L̂φk ≡
∫
dP dP ′ dK ′Wkk′↔pp′f0kf0k′(φp + φp′ − φk − φk′). (4)

We remark that the inverse temperature, thermal potential, and 4–velocity are not intrinsically part of the Boltzmann
equation, since they were introduced through this linearization procedure. These variables are commonly defined using
the so-called matching conditions [27–29].

If interpreted as a linear operator in Hilbert space, L̂ can be shown to be a negative semidefinite operator [27].
These properties imply that L̂ has only non-positive eigenvalues, the absolute values of which may be interpreted as
the reciprocal of the microscopic relaxation times of non-equilibrium perturbations [30, 31]. A fundamental property
of the linearized Boltzmann collision operator, valid for any type of interactions, is that its only eigenfunctions with
zero eigenvalues are the quantities that are conserved in microscopic collisions such as energy, momentum, and, in
our particular case, particle number. That is,

L̂1 = 0 and L̂kµ = 0. (5)

Furthermore, fundamental properties of the transition probability rate Wkk′↔pp′ (such as time reversal symmetry)

guarantee that L̂ is self-adjoint ∫
dK ψkL̂φk =

∫
dK φkL̂ψk, (6)

and, thus, this integral also vanishes if ψk corresponds to a quantity that is conserved in collisions, i.e.,
∫
dKL̂φk = 0

and
∫
dK kµL̂φk = 0.

The properties above are of the utmost importance in the derivation of macroscopic conservation laws from the
linearized Boltzmann equation. Continuity equations that describe conservation of particle number and energy-
momentum are obtained by multiplying both sides of the linearized Boltzmann equation by 1 and kµ and integrating
in momentum, thus obtaining

∂µ 〈kµ〉 = 0, ∂µ 〈kµkν〉 = 0, (7)

where we made use of the following notation

〈· · · 〉 ≡
∫
dK (· · · ) fk. (8)

From (7), one identifies 〈kµ〉 as the conserved particle 4-current and 〈kµkν〉 as the energy-momentum tensor.

Relaxation time approximation: The relaxation time approximation corresponds to a simplification of the linearized
collision operator, L̂. The approximation proposed by Anderson and Witting amounts to [1]

L̂φk ≈ L̂RTAφk ≡ −
Ek

τR
f0kφk, (9)

where Ek ≡ uµkµ is the energy of the particle in the local rest frame and τR = τR (Ek) is the relaxation time, which
is interpreted as a phenomenological time scale within which the system reaches equilibrium. This model is already
an improvement over the approximation proposed by Marle [32], where it was imposed L̂RTAφk ≈ − (m/τR) f0kφk,
with m being the particle on-shell mass. Marle’s model is obviously ill-defined in the ultrarelativistic limit while the
approximation proposed by Anderson and Witting was able to recover qualitatively the results obtained using Grad’s
method of moments in the ultrarelativistic limit [1]. Furthermore, the AW formulation also makes it possible to find
analytical and semi-analytical solutions for fk [5, 6, 33–37]. We note that, in Hilbert space, the AW prescription
corresponds to setting L̂RTA ∼ −1, with 1 being the identity operator.

However, this approximation of the collision operator contains basic flaws that must be addressed – this being the
main motivation of this letter. The main problem is that this formulation is not consistent with the fundamental
properties of the collision operator discussed above when the relaxation exhibits an energy dependence or arbitrary
matching conditions are applied. As a matter of fact, instead of (7), one obtains the following equations of motion
for the conserved currents using the AW approximation,

∂µ 〈kµ〉 = −
∫
dK

Ek

τR
f0kφk, (10)

∂µ 〈kµkν〉 = −
∫
dK kµ

Ek

τR
f0kφk. (11)
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In many applications, the right-hand side of Eqs. (10) and (11) is set to zero by imposing the Landau matching
conditions [38], ∫

dK Ekf0kφk = 0,

∫
dK kµEkf0kφk = 0, (12)

which are used to define the temperature, thermal potential, and 4-velocity introduced in the relaxation time approx-
imation (9). Nevertheless, even this procedure is not general as it only guarantees the validity of the conservation
laws if one imposes that the relaxation time, τR, has no momentum dependence. Therefore, in order to circumvent
such a fundamental problem, another procedure to approximate the linearized collision term becomes necessary.

We propose the following modification of the relaxation time approximation to resolve this problem

L̂RTA ∼ −1 −→ L̂RTA ∼ −1+

5∑
n=1

|λn〉〈λn|. (13)

The expressions above are written in Hilbert space, with |λn〉 being the 5 degenerate orthonormal eigenvectors of L̂ that
have a vanishing eigenvalue, i.e., L̂|λn〉 = 0. This is nothing but the usual relaxation time approximation combined
with counterterms in such a way that it becomes a projector onto the subspace orthogonal to |λn〉. Naturally, with
this modification, one guarantees that L̂RTA|λn〉 = 0 independently of any matching condition or energy dependence
of the relaxation time, as it occurs for the linearized Boltzmann equation. The solution proposed above is well-known
in the non-relativistic limit [27, 30], but it has never been applied in the relativistic regime.

Our goal is now to write (13) in a less abstract form. In order to do so, we first have to re-express the microscopic
conserved quantities, 1 and kµ, as an orthogonal basis:

P
(0)
0 ≡ 1, P

(0)
1 ≡ 1−

〈Ek/τR〉0
〈E2

k/τR〉0
Ek, k

〈µ〉 ≡ ∆µνkν , (14)

where ∆µν ≡ gµν − uµuν is a projection operator onto the 3-space orthogonal to uµ, and we defined the momentum
integrals relative to the local equilibrium distribution function f0k as follows

〈· · · 〉0 ≡
∫
dKf0k (· · · ) . (15)

These basis elements are constructed to satisfy the following orthogonality relations,〈
(Ek/τR)P

(0)
0 P

(0)
1

〉
0

= 0,
〈

(Ek/τR)P
(0)
0 k〈µ〉

〉
0

= 0,
〈

(Ek/τR)P
(0)
1 k〈µ〉

〉
0

= 0. (16)

We then rewrite the relaxation time approximation in Eq. (13) using this basis, which gives the following expression,

L̂RTAφk = −Ek

τR
f0k

φk − 〈(Ek/τR)φk〉0
〈Ek/τR〉0

− P1

〈
(Ek/τR)P

(0)
1 φk

〉
0〈

(Ek/τR)P
(0)
1 P

(0)
1

〉
0

− k〈µ〉
〈
(Ek/τR) k〈µ〉φk

〉
0

(1/3)
〈
(Ek/τR) k〈ν〉k〈ν〉

〉
0

 . (17)

This is the main result of this letter. In this form, L̂RTA is an integral operator and, in this sense, becomes harder
to invert when compared to the usual Anderson-Witting approximation. We note that a reasoning similar to what
we have presented above has also been employed to render the relaxation time approximation compatible with the
Eckart frame in Refs. [39, 40].

Chapman-Enskog expansion: A natural step after the derivation of this new approximation for the linearized collision
operator is to analyze the effects of the energy dependence of the relaxation time and the choice of matching conditions
in the hydrodynamic regime. This will be done in the following by employing the traditional Chapman-Enskog series
– a derivative expansion of solutions of the Boltzmann equation [26, 27, 31]. The zeroth-order solution of such an
expansion leads to the local equilibrium solution itself and, thus, to φk = 0. On the other hand, the first-order
Chapman-Enskog approximation for φk is nontrivial and is obtained from the following equation,

f0k (Akθ +Bkkµ∇µα− βkµkνσµν) = L̂φk ≈ L̂RTAφk, (18)
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where θ ≡ ∂µu
µ is the expansion rate, ∇µ ≡ ∆µν∂ν , and σµν ≡ ∆µν

αβ∂αuβ is the shear tensor, with ∆µν
αβ ≡ (∆µ

α∆ν
β +

∆µ
β∆ν

α)/2− (1/3)∆µν∆αβ being a doubly symmetric and traceless projection operator. For the sake of convenience,
we further introduced the following scalar functions of α, β, m and Ek,

Ak =
(I20 + I21) I20 − I10I30

I10I30 − I220
Ek −

I10I21
I10I30 − I220

E2
k −

β

3

(
m2 − E2

k

)
.

Bk = 1− I10Ek

I20 + I21
, Inq =

1

(2q + 1)!!

〈
En−2qk

(
m2 − E2

k

)q〉
0
.

Note that the first-order Chapman-Enskog approximation leads to an integral equation for φk, which must be inverted.
We further note that the thermodynamic functions Inq were previously defined and used in Refs. [28, 41, 42] and they
appear often in the derivation of fluid dynamics from the Boltzmann equation. In fact, I10 ≡ n is the particle number
density, I20 ≡ ε is the energy density, and I21 ≡ P is the thermodynamic pressure.

Since L̂RTA is a linear operator, we may write the solution for φk in the following form,

φk = S(0)k θ + S(1)k kµ∇µα+ S(2)k kµkνσ
µν . (19)

All that remains is to determine the momentum dependence of the coefficients S(`)k . We perform this task by expanding
the coefficients in terms of a complete basis described in Refs. [29, 31, 41],

S(`)k =

∞∑
n=0

s(`)n P (`)
n , (20)

where P
(`)
n are orthogonal polynomials that satisfy

〈
(Ek/τR)

(
∆αβk

αkβ
)`
P

(`)
n P

(`)
m

〉
0
∼ δnm and can be constructed

following the Gram-Schmidt orthogonalization process as described in Refs. [31, 41]. We note that the terms associated

with the coefficients s
(0)
0 , s

(0)
1 , and s

(1)
0 are homogeneous solutions of Eq. (18) and, thus, they cannot be obtained from

an inversion procedure. Such coefficients must be determined separately, using the matching conditions imposed to
define the local equilibrium state. We note that the existence of such homogeneous solutions is an essential feature of
the linearized Boltzmann equation, which is preserved in our novel relaxation time approximation.

The expansion coefficients are then obtained using the orthogonality relations satisfied by the basis elements and
shall be given bellow. For the coefficients related to the scalar contribution, we find

s(0)n = −

〈
AkP

(0)
n

〉
0〈

(Ek/τR)P
(0)
n P

(0)
n

〉
0

,∀ n ≥ 2 (21)

for the coefficients related to the vector term one obtains

s(1)n = −

〈
∆αβk

αkβBkP
(1)
n

〉
0〈

(Ek/τR) ∆αβkαkβP
(1)
n P

(1)
n

〉
0

,∀ n ≥ 1 (22)

and, finally, for the coefficients related to the tensor term,

s(2)n =

〈(
∆αβk

αkβ
)2
βP

(2)
n

〉
0〈

(Ek/τR) (∆αβkαkβ)
2
P

(2)
n P

(2)
n

〉
0

. (23)

We note that the main difference between our approach and the traditional RTA, proposed by Anderson and Witting,
is that our solutions, (21) and (22), are not valid for all n – the homogeneous solutions have been properly subtracted
in our work. Otherwise, one lacks the freedom to employ arbitrary matching conditions. Such freedom is, as mentioned
above, an intrinsic property of the linearized Boltzmann equation that is fully preserved by our new formulation.

The coefficients s
(0)
0 , s

(0)
1 , and s

(1)
0 can only be obtained once matching conditions are provided. We now consider

a general set of matching conditions

〈gkφk〉0 = 〈hkφk〉0 = 0,
〈
qkk
〈µ〉φk

〉
0

= 0, (24)
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where gk(Ek) and hk(Ek) are arbitrary linearly independent functions, and qk(Ek) is an arbitrary function that does
not have to be linearly independent from gk and hk. These conditions lead to the following set of equations

〈gk〉0 s
(0)
0 +

〈
gkP

(0)
1

〉
0
s
(0)
1 = −

∞∑
n=2

〈
gkP

(0)
n

〉
0
s(0)n , (25)

〈hk〉0 s
(0)
0 +

〈
hkP

(0)
1

〉
0
s
(0)
1 = −

∞∑
n=2

〈
hkP

(0)
n

〉
0
s(0)n , (26)

〈
qk∆αβk

αkβ
〉
0
s
(1)
0 = −

∞∑
n=1

〈
qk∆αβk

αkβP (1)
n

〉
0
s(0)n . (27)

The equations above can be solved to obtain s
(0)
0 , s

(0)
1 , and s

(1)
0 in terms of solutions (21) and (22). Naturally, the

general solution for φk will depend on the choice of the functions gk, hk, and qk, i.e., they will depend on the choice
of matching conditions. We note that, in the case of a general matching condition, the 4-velocity is not necessarily
an eigenvector of the energy-momentum tensor.

Transport coefficients: The bulk viscous pressure, Π, particle diffusion 4-current, nµ, and shear stress tensor, πµν ,
are obtained by replacing the first-order Chapman-Enskog solutions for φk obtained above into the definitions of such
dissipative currents,

Π = −1

3
∆αβ

〈
kαkβφk

〉
0
, nµ = ∆µ

ν 〈kνφk〉0 , π
µν = ∆µν

αβ

〈
kαkβφk

〉
0
. (28)

This procedure leads to relativistic Navier-Stokes theory where, Π = −ζθ, nµ = κn∇µα, πµν = 2ησµν , with ζ being
the bulk viscosity, κn the particle diffusion coefficient, and η the shear viscosity. One then obtains the following
microscopic expressions for these transport coefficients,

ζ =
1

3

〈
∆αβk

αkβS(0)k

〉
0
, (29)

κn =
1

3

〈
∆αβk

αkβS(1)k

〉
0
, (30)

η =
1

15

〈
(∆αβk

αkβ)2S(2)k

〉
0
. (31)

The shear viscosity depends only on S(2)k and, thus, it will not be modified by our new relaxation time approximation.
Given that most previous works employing the relaxation time approximation focused on the effects of shear viscosity,
the fundamental problems in the AW approximation discussed here were not evident. On the other hand, the bulk

viscosity and particle diffusion coefficients depend on S(0)k and S(1)k and, thus, they are sensitive to the inconsistencies
of the AW approximation. As a matter of fact, we shall demonstrate that the effects of our corrections are significant
for those coefficients.

In the following, we calculate ζ and κn in the relaxation time approximation. For this purpose we assume Landau
matching conditions (which corresponds to setting gk = qk = Ek and hk = E2

k) and, motivated by Refs. [45–47], we
take the following momentum dependence for the relaxation time,

τR = (βEk)γtR, (32)

where the coefficient tR carries no momentum dependence and γ is an arbitrary constant that will control the energy
dependence of the relaxation time. For the sake of illustration, we shall consider results for γ = 0, γ = 0.5, and γ = 1.
Results for the bulk viscosity are shown in Fig. 1 for the traditional RTA (left panel) and our novel RTA (right panel),
while results for the particle diffusion are shown in Fig. 2 for the traditional RTA (left panel) and our novel RTA
(right panel). We note that, the results for γ = 0 displayed in both panels of Figs. 1 and 2 are identical, though they
are plotted in different scales.

We see that the modifications we implemented to the relaxation time approximation affect considerably the bulk and
particle diffusion coefficients, when an energy dependent relaxation time is employed. In fact, as shown in Fig. 1, the
traditional RTA can lead to negative transport coefficients depending on the choice of γ – a clear violation of the sec-
ond law of thermodynamics. For example, if we take γ = 0.5, a value argued to be a good approximation for effective
kinetic descriptions of quantum chromodynamics [45–47], the bulk viscosity becomes negative. Furthermore, we note



6

AW RTA
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γ=0.5
γ=1.0

0 5 10 15 20 25

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

mβ

ζ

tR (ε + P)

New RTA
γ=0.0
γ=0.5
γ=1.0

0 5 10 15 20 25

0.000

0.001

0.002

0.003

0.004

mβ

ζ

tR (ε + P)

FIG. 1: Dimensionless bulk viscosity coefficient, ζ/[tR(ε+ P )], as a function of mβ, assuming Landau matching
conditions. The results are shown for γ = 0 (solid curve), γ = 0.5 (dashed curve), and γ = 1 (dashed-dotted curve).
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FIG. 2: Dimensionless particle diffusion coefficient, κn/(tRn), as a function of mβ, assuming Landau matching
conditions. The results are shown for γ = 0 (solid curve), γ = 0.5 (dashed curve), and γ = 1 (dashed-dotted curve).

that the matching conditions will also affect these transport coefficients. However, we leave such study to future work.

Conclusions: We showed that the widely employed relaxation time approximation to the relativistic Boltzmann
equation, derived in [1], is inconsistent with microscopic and macroscopic conservation laws. We proposed a novel
relaxation time approximation that is free from such flaws and can be applied to describe systems with arbitrary
relaxation times and matching conditions. We further demonstrated that the modifications we proposed considerably
affected the temperature dependence of the bulk viscosity and particle diffusion coefficients.

The relaxation time formalism presented here is the only one that can be applied to investigate how different
choices of matching conditions (i.e., different hydrodynamic frames) affect the physical and mathematical properties
of relativistic hydrodynamics. This will be instrumental when investigating causality and stability of relativistic
fluids defined via a generalized derivative expansion, as shown in [48–52]. Finally, it is essential to investigate how
the analytic and semi-analytic solutions of rapidly expanding gases, derived in Refs. [5, 6, 33–37], are modified in
our novel relaxation time approximation, in particular when other matching conditions are employed. This will be
important in understanding the emergence of hydrodynamic behavior in ultrarelativistic heavy ion collisions.
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