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We present a stochastic quantum computing algorithm that can prepare any eigenvector of a quantum Hamil-
tonian within a selected energy interval [E − ε, E + ε]. In order to reduce the spectral weight of all other
eigenvectors by a suppression factor δ, the required computational effort scales as O[| log δ|/(pε)], where p is
the squared overlap of the initial state with the target eigenvector. The method, which we call the rodeo al-
gorithm, uses auxiliary qubits to control the time evolution of the Hamiltonian minus some tunable parameter
E. With each auxiliary qubit measurement, the amplitudes of the eigenvectors are multiplied by a stochastic
factor that depends on the proximity of their energy to E. In this manner, we converge to the target eigenvector
with exponential accuracy in the number of measurements. In addition to preparing eigenvectors, the method
can also compute the full spectrum of the Hamiltonian. We illustrate the performance with several examples.
For energy eigenvalue determination with error ε, the computational scaling is O[(log ε)2/(pε)]. For eigenstate
preparation, the computational scaling is O(log ∆/p), where ∆ is the magnitude of the orthogonal component
of the residual vector. The speed for eigenstate preparation is exponentially faster than that for phase estimation
or adiabatic evolution.

Quantum computing is a powerful paradigm with the po-
tential to describe large complex systems and eventually per-
form computations beyond the reach of classical computing.
Recently, there have been several exciting algorithmic ad-
vances in describing the time evolution of Hamiltonians on
quantum computers using a variety of different tools [1–6].
They can be broadly categorized as either Lie-Trotter-Suzuki
product formulas [7, 8] or linear combinations of unitaries
[9]. Unfortunately, the application of these techniques for
quantum state preparation is limited by existing hardware ca-
pabilities. Quantum adiabatic evolution is one approach to
quantum state preparation that starts with an eigenstate of a
simple Hamiltonian that slowly evolves with an interpolating
time-dependent Hamiltonian until reaching the desired target
Hamiltonian [10, 11]. The problem is that calculations based
on quantum adiabatic evolution require an extended time evo-
lution that makes the computational cost prohibitive for large
systems. To address this problem, we introduce a new frame-
work for quantum state preparation and spectrum determina-
tion called the rodeo algorithm.

The rodeo algorithm employs a strategy that is opposite to
quantum adiabatic evolution. As the name suggests, the rodeo
algorithm operates by shaking off all other states until only
the target eigenvector remains. In this regard, the rodeo algo-
rithm is similar in character to the projected cooling algorithm
[12, 13]. However, the rodeo algorithm has the advantage that
it can be applied to any quantum Hamiltonian and is a recur-
sive algorithm that achieves exponential convergence in the
number of cycles. It can be used to compute the full energy
spectrum as well as prepare any energy eigenstate. While the
rodeo algorithm might appear similar to Kitaev’s iterative ver-
sion of quantum phase estimation [14] and fixed-time energy
band filtering methods [15, 16], none of these methods can be
used efficiently to prepare individual eigenstates of a general
quantum Hamiltonian.

We will refer to the Hamiltonian of interest as the object
Hamiltonian, Hobj, and the linear space which it acts upon

FIG. 1. (color online) Circuit diagram for the rodeo algorithm.
The object system starts in an arbitrary state |ψI〉. Each of the ancilla
qubits are initialized in the state |1〉 and operated on by a Hadamard
gate H. We use each ancilla qubit n = 1, · · · , N for the controlled
time evolution of the object Hamiltonian, Hobj, for time tn. This
is followed by a phase rotation P(Etn) on ancilla qubit n, another
Hadamard gate H, and then measurement.

the object system. By assumption, the object system starts
in some initial state |ψI〉, which in general will update after
each measurement. We will use auxiliary or ancilla qubits
coupled to the object system. In the following we use the
standard terminology, ancilla qubits. But we also mention that
this collection of ancilla qubits is also informally called the
“rodeo arena”.

If the quantum device allows for mid-circuit measurements,
then only one ancilla qubit is needed. However, here we focus
on the implementation using different ancilla qubits for each
cycle of the rodeo algorithm. Each of the ancilla qubits is
initialized in the state |1〉 and operated on by a Hadamard gate
H. We use each ancilla qubit n = 1, · · · , N to control the
time evolution of Hobj for time tn. In order to achieve the
desired energy filtering, we operate on each ancilla qubit n
with the phase rotation gate P(Etn), follow that with another
Hadamard gate H, and then measure the qubit. We use the
convention that P(Etn) multiplies the phase eiEtn to the |1〉
state and leaves the |0〉 state untouched. The circuit diagram
for the rodeo algorithm is shown in Fig. 1.
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In order to illustrate the effect of these gate operations, let
us explicitly write out the operation for one cycle of the rodeo
algorithm with one ancilla qubit. Starting from the initial state
|1〉 ⊗ |ψI〉 and performing one rodeo cycle, we obtain[[

I
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1
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]
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(1)

where I is the identity operator on the object system. We note
that Hobj commutes with all of our gates, and so we can de-
scribe the action of the rodeo algorithm for each individual
eigenvector of Hobj with energy Eobj. In that case, the prob-
ability of measuring the ancilla qubit n in the |1〉 state is

cos2
[
(Eobj − E) tn

2

]
=
∣∣∣ 12 + 1

2e
−i(Eobj−E)tn

∣∣∣2 . (2)

The success probability of measuring all N ancilla qubits in
the |1〉 state is given by product,

PN =

N∏
n=1

cos2
[
(Eobj − E) tn

2

]
. (3)

If we now take random values of tn, we have an energy filter
for Eobj = E. The geometric mean of cos2 θ when sam-
pled uniformly over all θ is equal to 1

4 . Therefore the spectral
weight for any Eobj 6= E is suppressed by a factor of 1

4N
for

largeN . In the Supplemental Material, we discuss the spectral
filtering properties of the rodeo algorithm in detail. If we take
Gaussian random values for tn with root-mean-square value
tRMS, then in order to exponentially suppress eigenstates out-
side of an energy window [E − ε, E + ε], we need tRMS to
scale as O(1/ε).

Let us now consider what happens for an arbitrary initial
state |ψI〉. Let Ej be the energy eigenvalue nearest to E,
and let |Ej〉 be the corresponding eigenvector. In the limit
of large N , the probability that we measure the |1〉 state N
times in a row is pPN , where p is the overlap probability of
the initial state with |Ej〉, and PN is the success probability
for Eobj = Ej . By tuning E equal to Ej , this probability
becomes p. If we require that the spectral weights of all other
energy eigenvectors outside the interval [E−ε, E+ε] are sup-
pressed by a factor δ, then the computational effort scaling for
the rodeo algorithm is NtRMS/p = O[| log δ|/(pε)].

In order to successfully determine any given energy eigen-
value Ej with error ε, the computational cost scales as
O[(log ε)2/(pε)]. The search process involves O(log ε) se-
quential scans of the energy, each scan sweeping over an en-
ergy range that is some constant factorK smaller than the pre-
vious scan. Each scan is performed for several evenly spaced
values of E, with a fixed number of rodeo cycles, and tRMS

a factor of K larger than that used for the previous scan. The
total time evolution required will scale asO(1/ε), and the fac-
tor of (log ε)2/p comes from the required statistics needed to

perform the energy scans successfully with high probability.
The resulting performance as a function of ε is close to the
O(1/ε) bound set by the Heisenberg uncertainty principle.
For comparison, the computational effort for phase estimation
is O[1/(pε)] plus an additional cost that is O[(log ε)2] associ-
ated with the quantum Fourier transform. Iterative phase esti-
mation eliminates the need for the quantum Fourier transform,
but is suitable only for finding the energy of a pure eigenstate.
We note that the direct calculation of the expectation value of
the Hamiltonian for a pure eigenstate requires O(1/ε2) mea-
surements due to statistical errors.

In order to successfully prepare any given eigenstate |Ej〉
with a residual orthogonal component that has magnitude ∆,
the computational cost is O(log ∆/p). For this case, we keep
tRMS fixed but large enough that we are filtering out only the
desired eigenstate. We perform N = O(log ∆) cycles of the
rodeo algorithm, and this must be multiplied by 1/p for the
number of measurements required. In preparing the eigen-
state, it is important to keepE centered on the peak maximum
associated with Ej . Re-centering E with each cycle requires
only a constant overall factor in the computational cost that
is independent of p and ∆. In contrast, the computational
cost for the same task using phase estimation requires an ef-
fort that scales as O[1/(p∆)]. Adiabatic evolution requires
an effort that is O(1/∆) times a function of p which depends
on the adiabatic path connecting the initial and final Hamilto-
nians [17]. We see that for eigenstate preparation, the rodeo
algorithm is exponentially faster than both phase estimation
and adiabatic evolution in the limit ∆→ 0.

From Eq. (3), we can also derive two useful estimates for
∆, the magnitude of the residual orthogonal component, as a
function of the number of rodeo cycles, N ,

FA ≡
√

2−N (1− p)/[p+ 2−N (1− p)],

FG ≡
√

4−N (1− p)/[p+ 4−N (1− p)]. (4)

FA is appropriate for the case when N is much smaller than
the number of eigenstates with nonzero overlap with our ini-
tial state. This corresponds with a spectral suppression factor
of 1/2 at each order for the undesired eigenstates, correspond-
ing with the arithmetic mean of cos2 θ. FG is appropriate for
the case whenN is much larger than the number of eigenstates
with nonzero overlap with our initial state. This corresponds
with a spectral suppression factor of 1/4 at each order for the
undesired eigenstates, corresponding with the geometric mean
of cos2 θ.

The rodeo algorithm depends heavily on the initial-state
overlap probability p. It is, therefore, very helpful to improve
the quality of the initial state. One possible approach is to
make a variational ansatz based on physical intuition about
the nature of the eigenvector. Another strategy is to use do-
main decomposition to define a variational ansatz as a tensor
product of wave functions on smaller subsystems. Yet another
approach is some combination of variational methods and adi-
abatic evolution such as the quantum approximate optimiza-
tion algorithm [18].
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As a first application of the rodeo algorithm, we consider
the spin- 12 Heisenberg model in a uniform magnetic field with
10 sites forming a closed one-dimensional chain [19]. The
Hamiltonian has the form

Hobj = J
∑
〈j,k〉

~σj · ~σk + h
∑
j

σz
j , (5)

where J is the exchange coupling, ~σj are the Pauli matrices on
site j, 〈j, k〉 indicates nearest neighbors, and h is the coupling
to a uniform magnetic field in the z direction. We consider the
antiferromagnetic case with values J = 1 and h = 3. For our
initial state we use an alternating tensor product state,

|ψI〉 = |0101010101〉 . (6)

Since our initial state has a high degree of symmetry, we ex-
pect our initial state to have nonzero overlap with a relatively
small number of energy eigenstates.

Let us label the energy eigenstates of Hobj as |Ej〉. We de-
fine the initial-state spectral function as S(E) = | 〈Ej |ψI〉 |2
for E = Ej and S(E) = 0 otherwise. For the case of exact
degeneracy, we sum the contribution from all degenerate en-
ergy states. In Fig. 2, we plot the initial-state spectral function
using the rodeo algorithm for the Heisenberg spin chain with
N = 3 (thin blue line), 6 (thick green line), and 9 (medium
red line) cycles. We have averaged over 20 sets of Gaussian
random values for tn with tRMS = 5. This averaging over
sets of random values for tn decreases the stochastic noise
and results in a roughly constant background that can be dis-
tinguished from the spectral signal. For comparison, we show
the exact initial-state spectral function with black open circles.
We see that the agreement obtained using the rodeo algorithm
is excellent.

The real challenge will be to perform these calculations on
quantum computing devices with gate errors, measurement er-
rors, and short decoherence times. But it is promising that we
can obtain good results even though neither tRMS nor N are
very large. The resulting short gate depth is crucial for im-
plementation on noisy quantum devices. In the Supplemental
Materials, we show the corresponding results with tRMS = 1.
Even in that case, we can clearly identify the spectrum of en-
ergy states with strong overlap with the initial state.

In addition to computing the initial-state spectral function,
we can also prepare any energy eigenstate that has nonzero
overlap with our initial state. In the Supplemental Materi-
als, we show the overlap probability with energy eigenvector
|Ej〉 after N cycles of the rodeo algorithm. All of the energy
eigenvectors with nonzero overlap with our initial state can be
prepared with a relatively small number of rodeo cycles. After
an energy eigenstate has been prepared using the rodeo algo-
rithm, we can measure any properties of that eigenstate that
we choose, such as expectation values of observables, tran-
sition matrix elements to other energy eigenstates, and linear
response functions. Several examples of such calculations us-
ing prepared energy eigenstates will be discussed in a future
publication. See also Ref. [20–22] for some approaches to
computing linear response functions and spectral densities.
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FIG. 2. (color online) Initial-state spectral function for the
Heisenberg model. We plot the initial-state spectral function us-
ing the rodeo algorithm for the Heisenberg spin chain with 3 (thin
blue line), 6 (thick green line), and 9 (medium red line) cycles. We
have averaged over 20 sets of Gaussian random values for tn with
tRMS = 5. For comparison, we also show the exact initial-state
spectral function with black open circles.

In Fig. 3, we show results for the logarithm of the wave
function error for the rodeo algorithm when preparing the
energy eigenstate |Ej〉 corresponding to Ej = −18.1. We
plot the logarithm of the magnitude of the orthogonal comple-
ment, log ∆, versus the total time evolution, T , for tRMS = 1.
For comparsion, we show the estimates logFA and logFG

defined in Eq. (4). As expected, for small T , logFA pro-
vides a good estimate, while for very large T , logFG pro-
vides a better estimate. For comparison, we also show the
analogous results obtained with the same initial state but in-
stead using phase estimation and adiabatic evolution. For the
adiabatic evolution calculation, we use the initial Hamilto-
nian HI =

∑10
j=1(−1)jσz

j , with an interpolating function
H(t) = cos2[πt/(2T )]HI +sin2[πt/(2T )]Hobj. We note that
phase estimation and adiabatic evolution are similar in perfor-
mance, while the rodeo algorithm is exponentially faster than
both.

Even though the rodeo algorithm is more efficient than adi-
abatic evolution for eigenstate preparation, we can use adia-
batic evolution as a preconditioner for the rodeo algorithm, in
order to amplify the overlap of the initial state with the de-
sired eigenvector. In Table I, we show the overlap probability
for energy eigenvector |Ej〉 with Ej = −18.1 after precon-
ditioning with adiabatic evolution for time tAE and applying
N cycles of the rodeo algorithm with tRMS = 5. We see that
by preconditioning with tAE = 5, we achieve a more than
sevenfold increase in the initial state overlap probability. We
gain a significant computational advantage when using adia-
biatic evolution as a preconditioner for the rodeo algorithm
and expect this strategy to be very useful for larger system
calculations.

As a second application of the rodeo algorithm, we consider
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FIG. 3. (color online) Logarithm of the wave function error ver-
sus the total propagation time for the Heisenberg model. We
plot log ∆, versus the total propagation time, T , for the Heisen-
berg model. We show results for the rodeo algorithm, phase estima-
tion, and adiabatic evolution. We also show the asymptotic estimates
logFA and logFG.

TABLE I. Overlap probability with energy eigenvector |Ej〉 with
E = Ej = −18.1 after preconditioning with adiabatic evolution for
time tAE and the applying N cycles of the rodeo algorithm using
Gaussian random values for tn with tRMS = 5.

Ej tAE N = 0 N = 3 N = 6 N = 9

−18.1 0 0.110 0.746 0.939 0.997

−18.1 5 0.83074 0.99875 0.99988 0.99999

the Anderson localization model in one dimension, which de-
scribes the transition between extended and localized elec-
tronic states in the presence of spatially-varying disorder
[23, 24]. Our object Hamiltonian Hobj describes a single par-
ticle on a periodic, one-dimensional lattice with 100 sites. Let
us denote the position basis states as |k〉 with k = 0, · · · , 99.
The matrix elements of the object Hamiltonian are

[Hobj]k′,k = −δk′,k+1 − δk′,k−1 + ckδk′,k, (7)

where the coefficients ck provide diagonal disorder that con-
trol the amount of localization of the electronic wave func-
tions. In this example, we take the diagonal terms ck to be
Gaussian random numbers with zero mean and root-mean-
square value equal to 1

2 . With this amount of diagonal dis-
order, the resulting orbitals are rather localized in space. In
the Supplemental Materials, we also present results for the
case where diagonal disorder is much weaker and the energy
eigenstates are delocalized in space.

As a variational ansatz for the ground state, we take our
initial state to be the basis state |kmin〉 such that ckmin

is the
lowest diagonal element of the Hamiltonian. This choice re-
flects our physical intuition that the ground state is spatially
localized. In Fig. 4, we plot the initial-state spectral function
using the rodeo algorithm for the Anderson localization model
with the root-mean-square diagonal disorder equal to 1

2 . We
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FIG. 4. (color online) Initial-state spectral function for the An-
derson localization model with diagonal disorder 1

2
. We plot the

initial-state spectral function using the rodeo algorithm for the An-
derson localization model with the root-mean-square diagonal disor-
der equal to 1

2
. We show results for 3 (thin blue line), 6 (thick green

line), and 9 (medium red line) cycles. We have averaged over 20 sets
of Gaussian random values for tn with tRMS = 10. For comparison,
we also show the exact initial-state spectral function with black open
circles.

consider N = 3 (thin blue line), 6 (thick green line), and 9
(medium red line) cycles. We have also averaged over 20 sets
of Gaussian random values for tn with tRMS = 10. For com-
parison, we show the exact initial-state spectral function with
black open circles. We see that the exact spectral function is
well reproduced. The fact that our point-like initial state has
significant overlap with only a small fraction of energy eigen-
states is an indication of the localized character of the orbitals.

In this letter, we have presented a new method called the
rodeo algorithm for preparing quantum eigenstates and de-
termining spectral properties. It uses a tunable energy filter
and stochastic methods to prepare any eigenstate of a given
quantum Hamiltonian and can in fact be used to prepare the
eigenstates of any quantum observable. It is an efficient algo-
rithm with exponential convergence that can be performed us-
ing circuits with relatively short gate depth. In particular, the
speed for eigenstate preparation is exponentially faster than
that for phase estimation or adiabatic evolution. The rodeo
algorithm can be combined with variational methods and/or
quantum adiabatic evolution to provide a tool for solving the
quantum many-body problem even when there is no a pri-
ori information about the target eigenvector. It has the poten-
tial for wide applicability across many different fields, includ-
ing combinatorial optimization problems, strongly-correlated
electrons, nuclear structure and dynamics, and lattice quan-
tum chromodynamics. The results presented here were ob-
tained from classical computation, but we are now working
to implement the rodeo algorithm on quantum devices using
several quantum Hamiltonians. The results will be presented
in future publications.
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