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Tensor network theory and quantum simulation are respectively the key classical and quantum
computing methods in understanding quantum many-body physics. Here, we introduce the frame-
work of hybrid tensor networks with building blocks consisting of measurable quantum states and
classically contractable tensors, inheriting both their distinct features in efficient representation of
many-body wave-functions. With the example of hybrid tree tensor networks, we demonstrate ef-
ficient quantum simulation using a quantum computer whose size is significantly smaller than the
one of the target system. We numerically benchmark our method for finding the ground state of
1D and 2D spin systems of up to 8 × 8 and 9 × 8 qubits with operations only acting on 8 + 1 and
9 + 1 qubits, respectively. Our approach sheds light on simulation of large practical problems with
intermediate-scale quantum computers, with potential applications in chemistry, quantum many-
body physics, quantum field theory, and quantum gravity thought experiments.

A major challenge in studying quantum many-body
physics stems from the hardness of efficient represen-
tation of quantum wave-functions. The tensor net-
work (TN) theory, originated from the density ma-
trix renormalization group (DMRG) for 1D Hamiltoni-
ans [1, 2], provides a potential solution by describing the
state with a network consisting of low-rank tensors [3].
Despite its notable success in various problems, the TN
theory is inadequate to represent arbitrary systems, such
as ones behaving volume-law entanglement. This mo-
tivates an alternative approach of quantum simulation,
which uses a controlled quantum hardware to represent
the target quantum system naturally [4]. Quantum sim-
ulation can be used for studying complex many-body
systems, such as quantum chemistry and the Hubbard
model [5, 6]. While conventional quantum simulation
algorithms require universal quantum computing, which
is challenging to current technology [7], whether near-
term quantum devices [8] are capable of solving realistic
problems remains open [9–15]. Major technological chal-
lenges include whether we can control a sufficient number
of qubits and whether the gate fidelity is sufficiently low
to guarantee the calculation accuracy.

Here, we propose a hybrid TN approach to address
these challenges. Leveraging the ability of TNs and quan-
tum computers in efficient classical and quantum rep-
resentation of quantum states, we introduce a frame-
work of hybrid TN, which enables simulation of large
systems using a small quantum processor with a shallow
circuit. Previous studies along this line includes chem-
istry computation beyond the active-space approxima-
tion [16], concatenation of quantum states to a matrix

product state (MPS) [17], etc. Our result unifies these
existing task-tailored schemes; Yet, more importantly, it
provides the basis for general hybrid classical-quantum
representation of many-body wave-functions that is ap-
plicable to broad problems. We show this by consider-
ing an example of hybrid tree TNs and demonstrating
its application in studying static and dynamic problems
of quantum systems [18, 19]. We numerically test our
method in finding ground states of 1D spin clusters and
2D spin lattices with up to 8× 8 and 9× 8 qubits.

Framework.—We first introduce the framework of
hybrid tensor networks. We focus on qubits and the re-
sults can be straightforwardly generalized to higher di-
mensions. A rank-n tensor, when regarded as a multi-
dimension array, can be represented as Tj1,j2,...,jn with n
indices. The amplitude of an n-partite quantum state in
the computational basis corresponds to a rank-n tensor
|ψ〉 =

∑
j1,j2,...,jn

ψj1,j2,...,jn |j1〉 |j2〉 . . . |jn〉. A classical
TN consists of low-rank tensors, see Fig. 1(a), which can
efficiently describe physical states that lie in a small sub-
set of the whole Hilbert space. For example, a MPS [20]
|ψ〉 =

∑
j1···jn Tr[Aj1 . . . Ajn ] |j1 . . . jn〉 consists of rank-3

tensors with a small bond dimension κ of each matrix
Ajk , and compresses the state dimension from O(2n) to
O(nκ2). A quantum computer prepares states |ψ〉 by ap-
plying a unitary circuit to some initial states. We can
further add a classical index to the n-qubit state to form
a rank-(n+ 1) tensor {|ψi〉}, see Fig. 1(b).

Regarding low-rank tensors as classical tensors (super-
scrupt index) and quantum states as quantum tensors
(subscript index), we define hybrid TNs as networks con-
structed by connecting both classical and quantum ten-
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FIG. 1. Hybrid tensors and tensor contraction. (a) A low-
rank classical tensor. (b) An n + 1 rank tensor with n in-
dices representing an n-partite quantum system and 1 clas-
sical index. Each state could be prepared with (b1) differ-
ent unitary as |ψi〉 = U i |0̄〉 or (b2) different initial states
as |ψi〉 = U |0̄i〉. (c, d) Tensor contraction between a quan-
tum and a classical tensor. The contracted index could be (c)
classical or (d) quantum, which shares the same mathematical
definition, but is contracted in different ways. (e) Expecta-
tion values of local observables for a rank-(n + 1) tensor as

a hermitian observable M i′,i = 〈ψi
′
|O1 ⊗O2 ⊗ · · · ⊗On |ψi〉.

(e1) Suppose the index i is classical and |ψi〉 = U i |0̄〉, we get

each M i′,i by measuring the ancillary qubit in the three Pauli
bases and the other n qubits in the Z basis, with U1 = U i,

U2 = U i
′
(U i)†, and UM being the unitary that rotates to

the observable basis. (e2) Suppose the index i is classical
and |ψi〉 = U |0̄i〉, we use U1 to prepare four input states

|0̄i〉 , |0̄i
′
〉 , (|0̄i〉+ |0̄i

′
〉)/
√

2, (|0̄i〉+ i |0̄i
′
〉)/
√

2 and each M i′,i

corresponds to a linear combination of the measurement re-
sults. (e3) Suppose the index i is quantum, after applying the
unitary U for preparing the state |ψ〉 = U |0̄〉, we measure n
qubits in the Z basis and the other qubit in the Pauli X, Y ,
and Z bases.

sors. For example, the tensor Ai1,i2 represents a classi-
cal tensor with two classical indices and ψi

j1,j2,...,jn
rep-

resents a set of n-partite quantum states. Two ten-
sors, being either classical or quantum, are connected
by following the conventional contraction rule, such as
Ci1,i3 =

∑
i2
Ai1,i2Bi2,i3 . For example, we show the con-

nections of a quantum and a classical tensor in Fig. 1(c,
d) and refer to [21] for general cases.

While the mathematical rules are the same, classi-
cal and quantum tensors are contracted in two different
ways via tensor contraction and quantum state measure-
ment, respectively. For a rank-(n + 1) quantum tensor,
we show how to calculate expectation values of local ob-
servables in Fig. 1(e). Calculating expectation values of

general hybrid TNs works similarly. Although the com-
plexity highly depends on the network and the contrac-
tion order (see [21] for details).

Hybrid tree TN.—Contracting a general-structured
TN may have exponential complexity, explaining why
conventional TN theories consider networks with specific
topology, including 1D MPS [22–24], 2D projected entan-
gled pair states (PEPS, approximate contraction) [25],
tree TNs (TTN) [26], multiscale entanglement renormal-
ization ansatz (MERA) [27], etc. Here we consider hybrid
TNs with a tree structure such as in Fig. 2(a), which ad-
mits an efficient tensor contraction. Each node is either
a quantum tensor or any efficiently contractable classical
TN.

We consider several tree structures with depth 2. By
connecting a classical tensor to a quantum tensor, we
extend the state subspace as in Fig. 2(b) or represent
virtual qubits as in Fig. 2(c). Specifically, denoting the
classical tensor as αi, the network in Fig. 2(b) describes
a subspace {|ψ〉 =

∑
i α

i |ψi〉}, which, when applied in
quantum simulation, is a generalization of the subspace
expansion method that has been widely used for find-
ing excited energy spectra [28], error mitigation [29], and
error correction [30]. For the network in Fig. 2(c), it de-
scribes the scenario where we use a quantum state and
a classical tensor to respectively represent the active and
virtual space or multidegrees of freedom, as in quantum
chemistry and condensed matter [16, 31–33]. We can fur-
ther connect two quantum tensors via a classical tensor
as in Fig. 2(d), representing weakly interacted two sub-
systems as considered in Ref. [17].

Its generalization to multiple subsystems is given in
Fig. 2(e), where entanglement of local subsystems is de-
scribed by quantum states while the correlation between
local subsystems is described classically. Such a hybrid
TN can be useful for describing weakly-coupled subsys-
tems, such as clustered systems. We can also use classical
tensors to represent local correlations while a quantum
tensor to represent the non-local correlation, as shown
in Fig. 2(f), which may be useful for studying topolog-
ical order with long-range entanglement [34, 35]. The
construction of tree networks can be understood as an
effective renormalization procedure, and other classical
TNs such as MERA can be similarly used [21]. In addi-
tion to representing either local correlations or non-local
correlations with classical tensors, we can represent both
of them with quantum states, as shown in Fig. 2(g), and
expectation values of local observables can be efficiently
obtained in Fig. 2(h).

Our results can be naturally generalized to an arbi-
trary tree structure. For a tree with maximal depth D,
maximal degree g, and bond dimension κ, hybrid TTNs
represent a system of N = O(gD−1) qubits. The number
of circuits and the classical cost (using MPS) for mea-
suring local observables scales as O(Nκ2) and O(Ngκ4),
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FIG. 2. Hybrid tree tensor networks. (a) An example tree structure. (b) Connection of a quantum tensor and a classical
tensor. (c) Connection of a quantum tensor and a classical TN. (d) Connection of two quantum tensors via a classical tensor.
(e) Generalization of (d) with multiple subsystems. (f) Using classical tensors to represent local correlation and a quantum
tensor to represent correlations between subsystems. (g) A quantum-quantum network. (h1-4) An example for calculating
expectation values of (g). To calculate (h1) the expectation value of local observables ⊗ki=1 ⊗nj=1 O

i
j , we first calculate (h2)

the observable M
i′s,is
s for each tensor on the second layer with quantum circuits shown in Fig. 1(e1,e2), which converts to the

contraction (h3) and the measurement of the quantum circuit (h4).

respectively. We also show the cost for trees with loops
and its capability in representing entanglement beyond
the area-law in [21]. Since the hybrid TTN represents
a large set of quantum states and admits efficient calcu-
lation of local observables, it can be used for variational
quantum simulation for solving static and dynamic prob-
lems of large quantum systems.

Numerical simulation.—We test the effectiveness
of hybrid TNs in finding ground states of 1D and 2D
spin lattice systems with nearest-neighbor interactions
and external fields in Fig. 3. For 1D spin clusters, we
regard each adjacent n = 8 qubits as a subsystem and
consider k = 2, 3, . . . , 8 subsystems with n× k qubits. A

general form of the Hamiltonian is H =
k∑

j=1

Hj + λHint,

where Hj =
7∑

i=1

fẐ8j+iẐ8j+i+1 +
8∑

i=1

(
gX̂8j+i + hẐ8j+i

)
and Hint =

∑k−1
j=1 fjẐ8jẐ8j+1 represent the Hamiltonian

of the jth subsystem and their interactions, respectively,
with interaction strength λ. Here X̂i and Ẑi are Pauli op-
erators acting on the ith qubit. For the 2D n×k spin lat-
tice, we group each n = 3×3 qubits on a small square lat-
tice as a subsystem and consider k = Nx×Ny subsystems
with Nx (Ny) subsystems along x (y) direction. The 2D

Hamiltonian is H =
∑
〈i,j〉 fijẐiẐj +

∑
i

(
gX̂i + hẐi

)
,

where 〈i, j〉 represents all the nearest-neighbor pairs on
a square lattice. We consider that the interactions in
each subsystem are identical f = 1, while interactions
on the boundary of nearest-neighbor subsystem {fj} or
{fi,j} are generated randomly from [0, 1], as shown in
Fig. 3(a). The parameters of the external fields are set
as h = 1/π = 0.32 and g = 0.5.

Considering the hybrid TTN of Fig. 2(g), the first
layer state and the jth subsystem of the second layer are
generated as |ψ〉 = V (~θ0) |0̄0〉 =

∑
αi1,...,ik |i1, . . . , ik〉

and |ψij
j (~θj)〉 = U(~θj) |0̄ij 〉, respectively, with V and

U shown in Fig. 3(b) and initial states |0̄ij 〉 = |ij〉⊗n,
ij ∈ {0, 1}. The hybrid TTN represents a quantum state

|ψ̃(~θ)〉 =
∑

i1...ik

αi1,...,ik(~θ0) |ψi1
1 (~θ1)〉⊗ · · ·⊗ |ψik

k (~θk)〉 with

~θ = (~θ0, ~θ1, . . . , ~θk) representing all the parameters. The

state is automatically normalized since 〈ψi′j
j |ψ

ij
j 〉 = δi′j ,i′j .

For parameters ~θ, we obtain the energy expectation value
E(~θ) = 〈ψ̃(~θ)|H|ψ̃(~θ)〉 by following the contraction rule
of Fig. 2(h). We use variational imaginary time evolution

to minimize the energy E(~θ), which requires an ancillary
qubit (see [21, 36]). Thus the quantum systems needed
for simulating the 8 × k-qubit 1D and 9 × k-qubit 2D
systems need 8 + 1 and 9 + 1 qubits, respectively.

We benchmark the calculation by comparing with
open-boundary MPS for 1D systems and imaginary time
evolution PEPS for 2D systems. We consider the rela-
tive error 1−E/E0 with the ground state energy E from
hybrid TTN calculation, and E0 from MPS or PEPS. In
Fig. 3(c1, d1), we study the convergence of ground state
energy of 1D (c1) and 2D (d1) systems with coupling
strength λ = 1 on 8×8 and 9×4 qubits respectively, and
show a relative error below 10−3. Next, we study how
the coupling strength or the number of subsystems affect
the efficacy of hybrid TTN. We presents the calculation
error with respect to different λ for the 8 × 8-qubit 1D
and 9×4-qubit 2D systems in Fig. 3(c2) and (d2), respec-
tively. We find that although the error fluctuates with
different coupling strength, which might owe to instabil-



4

Hybrid 1DProduct states 1D Hybrid 2DProduct states 2D

!"#$%&'#()*+,-.

/"#$%&'#01,,&2-

!

!
"

!!

!

!"#

!"#

!"#

!"#

!"#

!

! !

!!!

!"#$%&'()*# +*,-./&'()*#

!"

!"

!"

!#

!"

!"

!#

!#

!#

!#

!!

!!

!!

!!

!!

!!!

!!!

!

! !

0 20 40 60
Iteration

10-4

10-3

10-2

10-1

100

Er
ro

r

0.2 0.4 0.6 0.8 1 1.2
Coupling 

10-4

10-3

10-2

10-1

Er
ro

r

0.2 0.4 0.6 0.8 1 1.2
Coupling 

10-4

10-3

10-2

10-1

Er
ro

r

2 3 4 5 6 7 8
Number of Subsystems

10-4

10-3

10-2

10-1

Er
ro

r

Number of Subsystems

Er
ro

r

0 20 40 60
Iteration

10-4

10-3

10-2

10-1

100

Er
ro

r

(a) (b) (c1)

(c3)

(c2)

(d1)

(d3)

(d2)

(b1) (b2)

FIG. 3. Numerical simulation for 1D and 2D quantum systems with hybrid TTN. (a) 1D spin cluster and 2D spin lattice with
interactions (thin lines) on the boundary. The interactions of subsystems are represented by thick lines. We group 8 adjacent
qubits and 3×3 qubits on a square sublattice as subsystems for the 1D and 2D systems, respectively. (b) The ansatz circuit for
the quantum tensors in Fig. 2(g). The circuits of both layers share similar structures with d repetitions of circuits in the dashed

box. Here, Rα (α ∈ {X̂, Ŷ , Ẑ}) represents single-qubit rotation around α-axis and the two-qubit gate is RZZ(θi) = e−iθiẐ⊗Ẑ .
The rotation angle (parameter) for each gate is initialized from a small random value and updated in each variational cycle.
The circuit depths for V (first layer tensor) and U (second layer tensor) are d(V ) = 6 and d(U) = 8. The additional unitary
M is inserted at the 1st and [d/2 + 1]th block of the first layer (b1) and the second layer (b2). (c)-(d) Simulation results of the
ground state energy. For the 1D and 2D cases, we compare E to the reference results E0 = EMPS and E0 = EPEPS obtained
from a standard DMRG with bond dimension κ = 32 and from PEPS imaginary time evolution with bond dimension κ = 5
and maximum allowed bond dimension of κ̃ = 64 during the contraction. We use the relative error 1 − E/E0 to characterize
the accuracy. The red dashed line (1D) and blue dash-dotted line (2D) correspond to the energy using tensor products of the
ground state of local subsystems. The cyan dot (1D) and blue triangle (2D) are results obtained with hybrid TNs. (c1, d1)
Convergence towards the ground state for the 1D 8 × 8 and 2D 9 × 4 systems with λ = 1, respectively. (c2, d2) Error versus
different subsystem coupling strength λ for the 1D 8 × 8 and 2D 9 × 4 systems, respectively. (c3, d3) Errors with different
numbers of local subsystems with λ = 1, respectively.

ity from the optimization, the error remains consistent
around 10−3. In Fig. 3(c3, d3), we show the calculation
error for the 1D with k subsystems (c3) and 2D with
Nx×Ny subsystems (d3) for λ = 1, and we can achieve a
desired simulation accuracy. These results with different
coupling strength and number of subsystems verify the
effectiveness and robustness of hybrid TTN method. We
refer to [21] for simulation details.

Applications.— While we are not expecting the hy-
brid TN applies universally to arbitrary quantum systems
in a similar way to universal quantum computers, we
do anticipate hybrid TNs find its applications in a wide
class of problems such as chemistry, many-body physics,
quantum field theory, and quantum gravity [21]. Assisted
by classical computers, hybrid TN could more efficiently
represent multipartite quantum states and bolster up the
power of near-term quantum computers to significantly
alleviate the limitations on the number of controllable
qubits and circuit depth.

Ideas corresponding to simple hybrid TTNs of Fig. 2(b,
c) have been studied for representing excited energy
eigenstates [28] and active + virtual orbitals [16] in
electronic structure calculation. While the scheme in
Ref. [16] assumed the configuration interaction ansatz
for the virtual orbitals, a general classical TN may be
used instead to improve the approximation (see Ref. [37]).
Another application of the hybrid TN is to go beyond
the BornOppenheimer (BO) approximation, which may
have applications in understanding radiationless decay
between electronic states [38], relativistic effects [39], or
conical intersections [40–42]. Hybrid TNs could also be
used for investigating the cluster systems [43, 44], toy
models for high energy physics [45–51], correlated mate-
rials [31–33, 52], as well as for exploring emergent quan-
tum phenomena [53–56], including searching for Majo-
rana zero-modes and topological phase transitions [57–
61]. We refer to [21] for detailed discussions.

Discussion.—We proposed a framework of hybrid
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tensor networks and studied its application in variational
quantum simulation. Targeting at practical problems
that have both classical and genuine quantum effects,
hybrid TNs integrate the power of classical TN theo-
ries and quantum computing, and hence enable quantum
simulation of large-scale problems with small quantum
processors and shallower circuits. Our work is different
from proposals of using a quantum computer to contract
a classical TN [62–65], whose generalization to hybrid
TN could be a further work. Besides TNs, there also
exist other powerful classical methods, such as quantum
Monte Carlo [66, 67] and machine learning with neural
networks [68, 69]. A future direction is to investigate
the combination of these methods with quantum comput-
ing. Another independent approach of simulating large
quantum systems with small quantum computers is to
decompose multi-qubit gates into a mixture of single-
qubit gates [70–73], whose combination with our method
may lead to an interesting future direction. After show-
ing advantages over classical super-computers in certain
tasks [74, 75], the next milestone is to solve practically
meaningful and classically intractable tasks. Our work
sheds light on the avenue for achieving this goal with
near-term hardware.
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Note added.—Recently, a relevant work was posted by
Fujii et al. [76]. They suggest a divide-and-conquer
method for solving a larger problem with smaller size
quantum computers in a similar vein to Fig. 2(g) (See
[21] for details). While their work used a different lan-
guage and focused on different examples, our results are
consistent and can be compared.
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