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Although genuine multipartite entanglement has already been generated and verified by experi-
ments, most of the existing measures cannot detect genuine entanglement faithfully. In this work, by
exploiting for the first time a previously overlooked constraint for the distribution of entanglement
in three-qubit systems, we reveal a new genuine tripartite entanglement measure, which is related
to the area of a so-called concurrence triangle. It is compared with other existing measures, and is
found superior to previous attempts for different reasons. A specific example is illustrated to show
that two tripartite entanglement measures can be inequivalent due to the high dimensionality of
the Hilbert space. The properties of the triangle measure make it a candidate in potential quantum
tasks and available to be used in any multi-party entanglement problems.

Introduction. A striking feature of modern physics
is entanglement, which describes the tensorial non-
biseparability of states for two or more parties that may
be well-separated in location. Following the two-party
teleportation by Bennett et al. [1], a faithful three-
party teleportation protocol was invented by Karlsson
and Bourennane [2] and was shown by Hillery et al. [3]
to be less vulnerable to cheating and eavesdropping than
the former two-party method. This established entan-
glement as a powerful resource in not only two-party,
but also three-party or potentially even more-party sys-
tems. A multipartite entanglement (ME) measure is thus
needed in order to quantify the resource.
Entanglement measures for two-party (especially two-

qubit) systems have been well studied (see [4–6]). The
Schmidt decomposition for two-qubit systems allows for
only one free parameter, e.g., the angle θ in

|ψ〉 = cos θ|00〉+ sin θ|11〉, 0 ≤ θ ≤ π/4. (1)

Therefore all bipartite measures for such systems are
equivalent in the sense that they all give the same result
when answering the question whether one state is more
entangled than another [7]. However for entanglement
in a multi-party system, although experimental observa-
tions have been successfully implemented (e.g. [8–10]),
searches for its measures still encounter difficulties.
Even for three-qubit systems the situation is much

more complicated. It was found by Aćın et al. [11]
that five free parameters are needed in the generalized
Schmidt decomposition for a generic three-qubit system,
and thus one single measure may not be sufficient in or-
der to fully characterize the properties of multipartite
entanglement (see Vidal [12]).
In addition, a new significant concept, labeled as “gen-

uine”, has been introduced for multi-party systems. All
three-qubit states were clearly separated by Dür, Vidal
and Cirac [13] into four distinct classes: product states,
biseparable states, the GHZ class and the W class. In
the former two classes, at least one qubit is disentangled
from the rest of the system. In contrast, the three qubits

in GHZ class and W class are called genuinely entan-
gled. An important background fact is that three-party
teleportation may be expected to succeed if and only if
the state shared by Alice, Bob and Charlie is genuinely
entangled. Thus a good ME measure has to satisfy the
following two conditions to be called a genuine multipar-

tite entanglement (GME) measure. The two conditions
were identified by Ma et al. [14] as:

(a) The measure must be zero for all product and bisep-
arable states.
(b) The measure must be positive for all non-biseparable
states (GHZ class and W class in the three-qubit case).

Only a GME measure can faithfully quantify the three-
party entanglement used as a resource in the teleporta-
tion protocol and potentially others.

The open difficulties make the measurement of multi-
partite entanglement mysterious but interesting. Previ-
ously, a series of ME measures have already been invented
and developed but most of them are not GME. On the
one hand, examples such as multipartite monotones by
Barnum and Linden [15], Schmidt measure P by Eisert
and Briegel [16, 17], global entanglement Q by Meyer et
al. [18, 19] as well as generalized multipartite concur-
rence CN by Carvalho et al. [20] fail to satisfy condition
(a). On the other hand, the famous 3-tangle by Coffman
et al. [21, 22], as well as entanglement based on “fil-
ters” by Osterloh and Siewert [23], GME based on PPT
mixture by Jungnitsch et al. [24], and the multi-party
coherence advanced by Qian et al. [25] violate condition
(b). There are also several measures based on identifying
the distance between a given state and its closest product
state (see examples in [26–28]). From their definitions,
they violate condition (a).

The main purpose of this work is to advance a new
triangle measure specifically for three-qubit systems
which has an extremely simple form and an elegant
geometric interpretation, satisfying both GME require-
ments (a) and (b). Its advantage of being non-increasing
under local quantum operations assisted with classical
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FIG. 1. The concurrence triangle for a three-qubit system.
The square of the three one-to-other bipartite concurrences
are equal to the lengths of the three edges.

communications (LQCC) makes it a qualified candidate
as a resource in any quantum tasks. In addition,
we will also identify several existing GME measures
and quantify the new measure’s superiority to all of them.

Triangle Area and GME The definition of our tri-
partite entanglement measure uses the well-known bipar-
tite concurrence of Wootters (see [4, 29]). For a generic
three-qubit system, when considering the entanglement
between one qubit and the remaining two taken together
as an “other” single party, we have three one-to-other bi-
partite entanglements, namely C1(23), C2(31) and C3(12),
where a subscript i refers to the system’s ith qubit.
Those three bipartite entanglements were found not

completely independent by Qian et al. [30]. In their
work, the entanglement polygon inequality states that one
entanglement cannot exceed the sum of the other two,

Ci(jk) ≤ Cj(ki) + Ck(ij). (2)

A stronger version for this inequality was found by Zhu
and Fei in [31], where all three concurrences are replaced
by their squared forms,

C2
i(jk) ≤ C2

j(ki) + C2
k(ij). (3)

An obvious geometric interpretation [30] for these in-
equalities is that the three squared (or not) one-to-other
concurrences can represent the lengths of the three edges
of a triangle. When referred to the squared formula (3),
we will call it the concurrence triangle. This is shown in
Fig. 1.
There is a physical meaning for the perimeter of the

concurrence triangle. It is a tripartite entanglement mea-
sure considered by Meyer and Wallach [18], and also in-
terpreted by Brennen [19], called global entanglement. As
listed in Fig. 2, global entanglement is zero only for prod-
uct states, and is positive for both biseparable and non-
biseparable states. Thus it violates condition (a) and is
not a GME measure.
The area of the concurrence triangle is another intrigu-

ing quantity. It is zero for both product and biseparate

states, and thus satisfies condition (a) for GME. How-
ever, there exists one class of concurrence triangle with
zero area, but corresponding to non-biseparable states. If
we reckon the area as a tripartite entanglement measure,
it seems to violate condition (b) and is thus not a GME.
This is included in the list in Fig. 2.
Our first result, in Theorem 1, is to show that this class

of concurrence triangle does not even exist.

Theorem 1. The area of the concurrence triangle is zero

iff it has at least one edge with zero length.

This is called the Triangle No-Area Theorem. The proof
is not difficult and is given as an Appendix. Generically,
a triangle has zero area when its three vertices are co-
linear. Thm. 1 excludes the possibility that the three
vertices are colinear but no two vertices coincide, which
corresponds to the non-biseparable states. With this in
mind, we know that the area of the concurrence trian-
gle also satisfies condition (b). And so we have our next
result:

Theorem 2. The square root of the area of the concur-

rence triangle is a genuine tripartite entanglement mea-

sure.

Heron’s formula for triangle area leads to the following
expression for our triangle measure,

F123 ≡
[

16

3
Q
(

Q− C2
1(23)

)(

Q− C2
2(13)

)(

Q− C2
3(12)

)

]1/4

,

where Q =
1

2

(

C2
1(23) + C2

2(13) + C2
3(12)

)

. (4)

Q is the half-perimeter and thus equivalent to the global
entanglement, while the prefactor 4

/√
3 is for normaliza-

tion, and the extra square root beyond Heron’s formula
guarantees local monotonicity under LQCC, which sur-
vives numerical tests. We denote the expression for the
three-qubit triangle measure as F123, and give it a name,
the concurrence fill.
We provide a quick check of the F123 measure in the fol-

lowing way. According to [13], any pair of states in either
GHZ class, or in W class, are “stochastically equivalent”
in the sense that the conversion probability between the
two states under LQCC is non-vanishing. This builds up
strict rankings for the amount of entanglement within
the two respective classes according to local monotonic-
ity. However, a gap between the two classes remains since
a state in GHZ class can never be converted into one in
W class by LQCC, not even with only a very small prob-
ability of success, and vice versa, so there is no way to
compare the entanglement for two states from the two
distinct classes by using only local monotonicity. As an
example, the representatives of the two classes are

|GHZ〉 = 1√
2
(|000〉+ |111〉) ,

|W〉 = 1√
3
(|100〉+ |010〉+ |001〉) , (5)



3

Non-Biseparable Non-Biseparable Biseparable Product

> 0 > 0 > 0 = 0

> 0 = 0 = 0 = 0

> 0 > 0 = 0 = 0

OK Non-existing OK OKAvailabilities

Shortest Edges

Areas

Perimeters

States

Triangles

1

2 3

12 3 2 1, 3 1, 2, 3

FIG. 2. The table of possible states and their corresponding concurrence triangles. The values of three multipartite entanglement
measures (perimeters for global entanglement, areas for concurrence fill and shortest edges for GMC) are compared with zero.
One class of the non-biseparable triangles is proved to be non-existing by Thm. 1.

which are the most entangled states in their respective
classes. How shall we compare the entanglements for
the two representatives? Helpfully for this, we employ
the result shown by Joo et al. [32] that in three-party
teleportation, the GHZ state can faithfully teleport an
arbitrary single-qubit quantum state while the W state
is relatively less capable, with a success rate less than 1.
In this sense, we believe that one should require more
than local monotonicity and conditions (a) and (b) by
accepting a new condition:

(c) A GME measure ranks the GHZ state as more entan-
gled than the W state.

Condition (c) is a bridge connecting the two distinct GHZ
and W classes. A measure satisfying all the above con-
ditions can be called a “proper” GME measure.

In fact, concurrence fill is maximized for the GHZ
state, i.e. F123 =1, because the lengths of the three
edges are all maximal, equal to 1. For the W state, F123

is 8/9 ≈ 0.889. The fact that concurrence fill correctly
considers the GHZ state as more entangled than the W
state conforms to condition (c), and thus F123 can be
regarded as a “proper” GME measure.

Comparisons of GME. Besides the ME measures
mentioned in the introduction section which violate ei-
ther condition (a) or (b), three GME examples already
exist that satisfy both.

First genuinely multipartite concurrence (GMC), de-
noted as CGME, was advanced by Ma et al. [14] and fur-
ther developed by Hashemi-Rafsanjani et al. [33]. The
geometric interpretation is surprising: for three-qubit
systems, CGME is exactly the square root of the length

of the shortest edge of the concurrence triangle. For sim-
plicity, in this work, we shall ignore this square root and
treat CGME as the length of the shortest edge since the
two resulting measures are obviously equivalent. From
Fig. 2 we know that the shortest edge is zero for both
biseparable and product states and is positive for non-
biseparable states, and thus GMC is indeed a GME mea-
sure.

The second measure is the generalized geometric mea-

sure (GGM) identified by Sen(De) and Sen [34, 35], which
gives the distance between the given state and its closest
biseparable state. Note that this is a generalization of
the measure given by Wei and Goldbart [28]. GGM is
quite similar to GMC in that they both give the minimal
entanglement among all possible bipartitions, but with
different bipartite entanglement measures. Since all bi-
partitions in three-qubit states must include one qubit as
a subsystem, and all bipartite entanglement measures are
equivalent in this one-qubit situation, GMC and GGM
are equivalent for three-qubit cases. This means GMC
and GGM will always give the same answer when com-
paring entanglements between two different three-qubit
states.

The third measure is denoted as σ by Emary and
Beenakker [36]. Another surprising result is that σ is
actually the average of 3-tangle and GMC, i.e. σ =
(τ + CGME)/2. Thus we see that the three known mea-
sures are either equivalent or dependent. As a result, in
what follows, we only need to compare concurrence fill
and GMC.

In [37], Nielsen pointed out that a pair of states in one
class, although stochastically equivalent, can still be in-
comparable, meaning that the ranking of their entangle-
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FIG. 3. The concurrence triangles for ψ1, ψ2 and ψ3 respec-
tively. The lengths of the edges as well as the areas are shown
at the appropriate locations.

ment cannot be judged simply by local monotonicity. We
can move one step further and show that two GME mea-
sures, although both satisfying local monotonicity, can
provide different opinions on the ranking of one specific
pair of states, and thus are inequivalent. Indeed, con-
currence fill and GMC are two inequivalent measures. In
fact, for two arbitrary triangles, it is possible that one
has a smaller area but a longer “shortest edge”, while
the other one has a bigger area but a shorter “shortest
edge”. Consider the following two states, both in GHZ
class,

|ψ1〉 =
1√
2
sin(

π

5
)|000〉+ 1√

2
cos(

π

5
)|100〉+ 1√

2
|111〉,

|ψ2〉 = cos(
π

8
)|000〉+ sin(

π

8
)|111〉. (6)

GMC considers that |ψ2〉 is more entangled than |ψ1〉
since CGME(ψ2) = 0.5 > CGME(ψ1) = 0.345. However,
concurrence fill considers the opposite due to the rela-
tion F123(ψ2) = 0.5 < F123(ψ1) = 0.626. In this sense,
GMC and concurrence fill are two inequivalent measures
of tripartite entanglement. See details in Fig. 3. Such
inequivalence does not occur among two-qubit measures.
It is new for three-qubit systems.
By taking another glance at their definitions, one

would naturally assume that concurrence fill contains
more information than GMC does because F123 depends
on the lengths of all three edges but CGME only depends
on the shortest one. In fact, consider the third state

|ψ3〉 =
1

2
|000〉+ 1

2
|100〉+ 1√

2
|111〉. (7)

GMC cannot tell the difference between the entangle-
ments of |ψ2〉 and |ψ3〉, saying that they are both 0.5,
since the length of the shortest edge does not change.
However, the overall triangle does change since the other
two longer edges are different, but this is not detected
by GMC. On the other hand, concurrence fill detects the
entanglement for |ψ2〉 as 0.5 which is much smaller than

F123

CGME

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

θ π

θ π=0.304

FIG. 4. Multipartite entanglement measured by concur-
rence fill F123 and GMC CGME, for the generalized W state
cos θ|100〉 + 1√

2
sin θ|010〉 + 1√

2
sin θ|001〉. The smooth solid

blue line is for concurrence fill, while the dashed orange line
with a sharp peak at θ/π = 0.304 is for GMC.

that of |ψ3〉, given by 0.748. This can be easily visualized
in Fig. 3. In this sense, concurrence fill has an advantage
over GMC.
As a side comment, concurrence fill is always “smooth”

for pure states due to its analytic form in Eq. (4). GMC
retains the possibility to have “sharp peaks” (physically
counter-intuitive?) due to the non-analytic minimum
argument in its expression (note that all distance based
measures contain this minimum condition). This is
visualized in Fig. 4. One could possibly argue that
concurrence fill is a more natural measure compared to
“minimum-engaged” measures.

Discussion and Summary. Concurrence fill can be
generalized to more-qubit cases. For example, in the
four-qubit case, it is regarded as the volume of the “con-
currence tetrahedron”, of which the areas of the four sur-
faces are given by the four squared one-to-other concur-
rences. Compared to three-qubit case, more considera-
tions are needed and this will be further studied else-
where.
Concurrence fill can also be conceptually generalized to

the case of mixed states via the convex roof construction,

F123(ρ) = min
{pi,ψi}

∑

i

piF123(ψi), (8)

where the minimum is taken over all possible decompo-
sitions ρ =

∑

i pi|ψi〉〈ψi|. It is interesting to see whether
an expressions for the minimum or at least a lower bound
can be given. It is also not known whether the homogene-
ity in C2 of Eq. (4) can be helpful, as is implied by [38].
We emphasize here that the introduction of concur-

rence fill helps to better understand ME, and can be ap-
plied to any existing or potential scenarios to study the
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system’s behaviors, not only limited to theoretical exam-
ples such as sudden death of ME [39] and multipartite
entanglement transfer [40], but also experimental obser-
vations as is discussed in [41]. The current quantification
of tripartite entanglement can also serve as a key to un-
derstand genuine non-locality, as a generalization of the
result in [42].

In summary, by exploiting a previously overlooked re-
striction for the distribution of one-to-other entangle-
ments in a multi-party system, we have advanced a gen-
uine multipartite entanglement measure F123 for three-
qubit states, which by definition, is the square root of
the area of the concurrence triangle, and satisfies local
monotonicity and all GME conditions (a), (b) and (c). It
conforms to the “proper” requirement, assigning greater
entanglement to GHZ than W, which comes from the
connection with the physical process of tripartite tele-
portation.

Finally we compared concurrence fill with another
GME measure, called genuinely multipartite concur-
rence, which turns out to be the length of the shortest
edge of the concurrence triangle. A specific example
was illustrated for the first time to show that two
tripartite entanglement measures can be inequivalent
due to the high dimensionality of the Hilbert space. One
could argue that concurrence fill is a superior measure
compared to GMC for two reasons: (1) Concurrence
fill contains more information. GMC cannot detect the
difference between entanglements of two states that are
determined to carry different amounts of entanglement
by concurrence fill. (2) Concurrence fill is always
“smooth”, while all the other measures that contain a
minimum argument will have non-analytical sharp peaks.
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APPENDIX: PROOF OF THEOREM 1

Proof. We consider two types of bipartite entanglement,
the squared concurrence C2 and the normalized Schmidt
weight Y [30]. Their relation is given by

Y (C2) ≡ f(C2) = 1−
√

1− C2. (A.1)

The first order derivative of f(x)/x can be proved to be
strictly positive when x ∈ [0, 1], and thus f(x)/x is a
strictly increasing function.

Suppose we have a concurrence triangle with zero area
but none of the three edges have zero lengths. This means
that the lengths of the three edges a, b, c (assuming c is
the largest one) have to satisfy c = a + b, which means

c > a > 0 and c > b > 0. This leads to

f(a)

a
<
f(a+ b)

a+ b
and

f(b)

b
<
f(a+ b)

a+ b
. (A.2)

By adding the two inequalities together, we have f(a) +
f(b) < f(a+ b), or equivalently

Y (a) + Y (b) < Y (a+ b) = Y (c). (A.3)

But remember that according to the entanglement
polygon inequality in [30], Y (a), Y (b) and Y (c) are also
the lengths of the three edges of a triangle, which means
that

Y (a) + Y (b) ≥ Y (c). (A.4)

Obviously, (A.4) violates (A.3), and thus a zero area
concurrence triangle cannot have all three edges with
nonzero lengths. This is exactly what Thm. 1 states.
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