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Quantum state tomography is the conventional method used to characterize density matrices for general quan-
tum states. However, the data acquisition time generally scales linearly with the dimension of the Hilbert space,
hindering the possibility of dynamic monitoring of a high-dimensional quantum system. Here, we demonstrate
a direct tomography protocol to measure density matrices of photons in the position basis through the use of
a polarization-resolving camera, where the dimension of density matrices can be as large as 580×580 in our
experiment. The use of the polarization-resolving camera enables parallel measurements in the position and
polarization basis and as a result, the data acquisition time of our protocol does not increase with the dimension
of the Hilbert space and is solely determined by the camera exposure time (on the order of 10 milliseconds).
Our method is potentially useful for the real-time monitoring of the dynamics of quantum states and paves the
way for the development of high-dimensional, time-efficient quantum metrology techniques.

Introduction.—The ability to characterize a quantum state
is crucial in quantum technologies, both because it ensures
that the desired quantum state has been generated and it can
be used to determine the quantum state after interacting with a
system. Quantum state tomography is an established approach
to reconstruct a general quantum state (either pure or mixed)
through a series of projective measurements performed on
identically prepared states [1–13]. Recently, the concept of
direct measurement [14] has been established, which can di-
rectly be used to read out the complex-valued amplitudes of
a pure quantum state through a proper sequence of weak and
strong measurements [15–31]. The elimination of the com-
plicated post-processing procedure of state reconstruction is
one of the main advantages of direct measurement methods,
allowing it to serve as an alternative metrology technique that
may greatly reduce experimental complexity.

The concept of direct measurement is quickly being ex-
tended to the characterization of various quantum systems
[32–38]. Nonetheless, one remaining challenge in quantum-
state metrology is the limited characterization speed and ef-
ficiency for high-dimensional quantum states. Most demon-
strated techniques, including direct measurement methods,
involve either a slow scanning process or a complicated
post-processing procedure, where the characterization time
scales unfavorably with the dimension of the quantum sys-
tem. As a result, almost all quantum metrology demon-
strations to date have been carried out under stable labora-
tory conditions, and the measurement of a high-dimensional
quantum state can take as long as several hours. Com-
pressive sensing has been implemented for the tomography
of an N -dimensional pure state in the spatial domain with
N = 19, 200, which still requires ≈0.25N measurements
[36]. Direct measurement of the density matrix in the high-
dimensional orbital-angular-momentum (OAM) basis has also
been reported [37, 38]. However, these methods use single-
pixel detectors for data collection and require performing a
series of measurements via scanning for the reconstruction of
high-dimensional quantum states. In general, since the num-

ber of measurements scales linearly with the dimension of the
Hilbert space, the data acquisition time inevitably increases
for high-dimensional quantum states, hindering the possibility
of real-time monitoring of dynamic quantum systems. While
the recently proposed auxiliary Hilbert space tomography [39]
can reduce the measurement complexity for density matrix
characterization, this method is only applicable to OAM states
and thus exhibits a limited range of application. This is be-
cause it is more desirable to characterize the density matrix in
the position basis, which is analogous to the mutual coherence
function in classical optics, of which Michelson stellar inter-
ferometry [40] is a practical application. However, the con-
ventional method observes the interference visibility between
two apertures to measure the coherence between two points,
and the positions of two apertures have to be scanned to ob-
tain the complete density matrix [41], which is extremely time
consuming. In the following, we introduce a scan-free direct
tomography protocol that can measure the complex-valued
high-dimensional density matrix for mixed photon states in
the position basis by using a polarization-resolving camera.
The data acquisition time does not increase with the dimen-
sion of the Hilbert space, and the maximum dimension al-
lowed by our protocol is only limited by the pixel count of the
detector array.

Direct tomography protocol.—The density matrix can be
represented as an incoherent mixture of pure states, which can
be expressed as ρ̂0 =

∑
k pk |ψk〉 〈ψk|, where |ψk〉 is the pure

quantum state normalized as 〈ψk|ψk〉 = 1, and pk is the prob-
ability coefficient normalized as

∑
k pk = 1. The element of

a density matrix in the position basis can be computed as

ρ0(x1, y1, x2, y2) = 〈x1, y1| ρ̂0 |x2, y2〉

=
∑
k

pk 〈x1, y1|ψk〉 〈ψk|x2, y2〉

=
∑
k

pkψk(x1, y1)ψ∗k(x2, y2),

(1)

where |x, y〉 denotes the position eigenstate located at (x, y).
In our experiment, we assume that the traverse profile of
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FIG. 1. The schematic of the experimental setup. A Dove prism
is used to rotate the horizontally polarized beam by 90°. A 1D
Hermite-Gauss state HG2(x) is used as an example to visualize the
beam rotation. SLM: spatial light modulator. HWP: half-wave plate.
PBS: polarizing beamsplitter. QWP: quarter-wave plate. PolarCam:
polarization-resolving camera.

the quantum state has only a one-dimensional (1D) vari-
ation along the x axis and is invariant along the y axis.
Therefore, we have ψk(x1, y1) = ψk(x1) is independent
of y, and the density matrix element can be simplified as
ρ0(x1, y1, x2, y2) = ρ0(x1, x2), and

ρ0(x1, x2) =
∑
k

pkψk(x1)ψ∗k(x2), (2)

which is the quantity to be measured. It is worth noting
that Eq. (2) is reminiscent of the mutual coherence function
in classical optics [40, 41]. We use the polarization as the
the pointer state [32] which is prepared in the diagonal po-
larization state |D〉 = (|H〉 + |V〉)/

√
2, where |H〉 and |V〉

denote the horizontal and vertical polarization state, respec-
tively. Therefore, the full initial density matrix can be written
as ρ̂i = ρ̂0 ⊗ |D〉 〈D|. Our direct tomography protocol entails
introducing a 90° beam rotation for the horizontally polarized
beam while leaving the vertically polarized beam unchanged.
This polarization-sensitive beam rotation can be described by
a unitary transformation as [38]

Û = T̂(π/2)⊗ |H〉 〈H|+ T̂(0)⊗ |V〉 〈V| , (3)

where T̂(θ) = exp
(
−iθ ˆ̀

)
is the rotation operator, ˆ̀

is the orbital angular momentum operator about the op-
tical axis, and the effect of rotation operator on the
position eigenstate can be written as T̂(θ) |x, y〉 =
|x cos θ + y sin θ,−x sin θ + y cos θ〉. The final density ma-
trix after this unitary transformation can be represented as
ρ̂f = Ûρ̂iÛ

†. The projective measurements [42, 43] we pro-
pose to perform can be represented by the following projec-

tors:

π̂D = |x, y〉 〈x, y| ⊗ |D〉 〈D| ,
π̂A = |x, y〉 〈x, y| ⊗ |A〉 〈A| ,
π̂R = |x, y〉 〈x, y| ⊗ |R〉 〈R| ,
π̂L = |x, y〉 〈x, y| ⊗ |L〉 〈L| ,

(4)

where |A〉 = (|H〉 − |V〉)/
√

2 is the anti-diagonal polariza-
tion state, |L〉 = (|H〉+ i |V〉)/

√
2 is the left-handed circular

polarization state, and |R〉 = (|H〉 − i |V〉)/
√

2 is the right-
handed circular polarization state. Therefore, the expectation
value of these projectors are found to be

ΓD(x, y) = Tr[π̂DÛρ̂iÛ
†]

=
1

4
(ρ0(−y,−y) + ρ0(x, x) + 2Re[ρ0(−y, x)]) ,

ΓA(x, y) = Tr[π̂AÛρ̂iÛ
†]

=
1

4
(ρ0(−y,−y) + ρ0(x, x)− 2Re[ρ0(−y, x)]) ,

ΓR(x, y) = Tr[π̂RÛρ̂iÛ
†]

=
1

4
(ρ0(−y,−y) + ρ0(x, x) + 2Im[ρ0(−y, x)]) ,

ΓL(x, y) = Tr[π̂LÛρ̂iÛ
†]

=
1

4
(ρ0(−y,−y) + ρ0(x, x)− 2Im[ρ0(−y, x)]) .

(5)
Using the above equations, the density matrix can be exper-

imentally reconstructed as

ρexp0 (x1, x2) = ΓD(x2,−x1)− ΓA(x2,−x1)

+ i(ΓR(x2,−x1)− ΓL(x2,−x1)).
(6)

It can be seen that the density matrix can be directly recon-
structed without using any complicated algorithm. In addition
to the reconstruction of the density matrix ρ̂exp0 , it is also de-
sirable to be able to reconstruct the pure states |ψk〉. In order
to reconstruct the pure states, we use singular value decompo-
sition [44]. The reconstruction can be unique if the pure states
are mutually orthogonal. For a square and Hermitian density
matrix ρ̂exp0 , it can always be decomposed as [45]

ρ̂exp0 = M̂ŜM̂†, (7)

where M̂ is a unitary matrix, and Ŝ is a real-valued diagonal
matrix whose diagonal elements Skk are the singular values of
ρ̂exp0 . It can be readily seen that

〈x1| ρ̂exp0 |x2〉 =
∑
k

Skk 〈x1| M̂ |k〉 〈k| M̂† |x2〉 . (8)

Comparing Eq. (8) with Eq. (1), one can find that

pexpk = Skk,

〈x|ψexp
k 〉 = 〈x| M̂ |k〉 .

(9)

As one can see, singular value decomposition can be used as a
tool to decompose a density matrix into an incoherent mixture
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FIG. 2. Experimental results for the phase-only states. (a) The im-
ages acquired by the PolarCam. (b) The real and imaginary part of
the reconstructed density matrix. The trace distance between the the-
oretical density matrix and the experimentally measured density ma-
trix is 14.2%±0.3%.

of pure states, which can be efficiently implemented by estab-
lished numerical algorithms [46]. It is worth noting that the
singular value decomposition discussed here is reminiscent of
the coherent mode decomposition in optical coherence theory
[47, 48].

Experiment.—The experimental setup to implement the di-
rect tomography protocol is shown in Fig. 1. A 633 nm HeNe
laser with an optical power of 3 mW is used as the source of
photons. The light beam is spatially filtered and attenuated
before it illuminates a spatial light modulator (SLM, Pluto 2
VIS-020, Holoeye). A series of computer-generated phase-
only holograms [49] is displayed onto the SLM to generate the
quantum states of interest. Mixed states can be generated by
switching the hologram on the SLM and by incoherently mix-
ing the intensity images acquired by the camera [50]. An iris
is used to pass the first diffraction order of light coming off the
SLM while blocking all other diffraction orders. A polarizer
and a half-wave plate (HWP) are used to generate the diagonal
polarization state |D〉. To implement the unitary transforma-
tion Û [cf. Eq. (3)], a polarizing beamsplitter (PBS) is used
to separate the horizontally and vertically polarized beam. A
Dove prism is applied to geometrically rotate the horizontally
polarized beam by 90°. A second PBS is used to recombine
the two beams and thus completes the implementation of Û.
A 45°-oriented quarter-wave plate (QWP) and a polarization-
resolving camera (PolarCam, BFS-U3-51S5P-C, FLIR) are
used to perform all the required projective measurements in
a single shot. The PolarCam has micro-sized polarizers (ori-
ented to 0°, 45°, 90°, and 135°, respectively) deposited on
the camera sensors and thus allows for the detection of four
different polarization states simultaneously. The camera ex-
posure time is approximately 10 milliseconds depending on
the intensity of the generated states. The QWP and the Po-
larCam jointly enable the projective measurements proposed
in Eq. (4). The image on the camera has a size of 580×580
pixels, and thus the dimensionality of the quantum states in
our experiment is N = 580. The pixel size of the camera is
3.45 µm.

In our experiment, we prepare a mixed state consisting of
three mutually orthogonal pure states |ψk〉 with k = 1, 2, 3.
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FIG. 3. Experimental results for the HG states. (a) The images ac-
quired by the PolarCam. (b) The real and imaginary part of the re-
constructed density matrix. The trace distance between the theoret-
ical density matrix and the experimentally measured density matrix
is 19.0%±0.3%.

More specifically, as our first demonstration, the pure states
used to construct the density matrix are

p1 = 0.21, 〈x|ψ1〉 = ei1.04πx/a,

p2 = 0.30, 〈x|ψ2〉 = eiπ[−8.42(x/a)
3+4.04(x/a)],

p3 = 0.49, 〈x|ψ3〉 = eiπ[−17.6(x/a)
5−x/a],

(10)

where −a/2 < x ≤ a/2 is the discretized position, and a =
2 mm is the size of the beam. These states are referred to the
phase-only quantum states henceforth.

As another test of our protocol, we use the 1D Hermite-
Gauss (HG) states to construct the mixed state:

HGm(x) =

(
2

πw2
0

) 1
4 1√

2mm!

×Hm

(√
2x

w0

)
exp

(
−x2

w2
0

)
,

(11)

where Hm(·) is the Hermite polynomial of order m [51], and
w0 = 0.15a is the beam waist radius. The HG states used in
the experiment are

p1 = 0.22, 〈x|ψ1〉 = HG0(x),

p2 = 0.33, 〈x|ψ2〉 = HG1(x),

p3 = 0.45, 〈x|ψ3〉 = HG2(x).

(12)

The images acquired by the PolarCam for the phase-only
states are shown in Fig. 2(a). We apply a digital low-pass
Gaussian spatial filter to process these images in order to re-
move the undesirable fringes caused by dusts and glass film
interference [52]. The density matrix can be directly re-
constructed based on these data by using Eq. (6). Due to
the experimental errors (e.g., misalignments, noises, imper-
fect mode generation fidelity, etc.), the experimentally recon-
structed density matrix ρ̂exp0 may not be strictly Hermitian.
Hence, we implement ρ̂exp0 → (ρ̂exp0 + ρ̂exp†0 )/2 to guaran-
tee the Hermiticity of the density matrix, and the results are
shown in Fig. 2(b). To quantify the accuracy of our protocol,
we calculate the trace distance between the ideal density ma-
trix ρ̂0 and the experimentally measured density matrix ρ̂exp0
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FIG. 4. The reconstructed phase-only quantum state for (a) |ψ1〉, (b)
|ψ2〉, and (c) |ψ3〉, respectively. The real (imaginary) part is shown
in the left (right) panel. The standard deviation of the experimental
data is denoted by the line width, which is generally too small to be
visible. The fidelity of each reconstructed state is shown at the top of
each corresponding subfigure.

as follows [44]:

Trace distance =
1

2

∣∣∣∣Tr[
√

(ρ̂0 − ρ̂exp0 )(ρ̂0 − ρ̂exp0 )†]

∣∣∣∣ , (13)

and the trace distance for the phase-only states is calculated
to be 14.2%±0.3%. It should be noted that a lower trace dis-
tance indicates a higher measurement fidelity of our measure-
ment protocol. This is because the trace distance quantifies
the maximum possible probability of distinguishing the quan-
tum states described by two density matrices, and thus the
trance distance between two exactly identical states is zero.
The experimental results for the HG states are presented in
Fig. 3, and the corresponding trace distance is measured to
be 19.0%±0.3%. We also numerically perform the singular
value decomposition for the experimentally measured den-
sity matrix. The reconstructed phase-only states are shown
in Fig. 4, and the reconstructed HG states are shown in Fig. 5.
For each experimentally reconstructed quantum state |ψexp

k 〉,

we compute its fidelity as
∣∣∣〈ψtheory

k

∣∣∣ψexp
k

〉∣∣∣2. The fidelity
for each reconstructed state is shown at the top of each cor-
responding subfigure. It can be seen that the fidelity of state
is always higher than 90%. In our experiment, we attribute
the nonzero trace distance primarily to the imperfect spatial
mode generation and the misalignment of the polarization-
sensitive beam rotator. As a consequence, the reconstructed
density matrix might be unphysical due to the possible lack
of Hermiticity and positive semi-definiteness [53]. However,
we notice that the standard maximum-likelihood-estimation-
based routine for recovering a physical density matrix [53] is
not readily applicable to our experiment, because it requires
the minimization of a likelihood function withN2 = 336, 400
independent parameters. This task can potentially be accom-
plished by using machine learning algorithms [54] and is sub-
ject to future study. In our experiment, we assume the trans-

a

1 580

-0.1

0

0.1

Im(  p1ψ1(x))

x1 (pixel)

1 580

-0.1

0

0.1

Re(  p3ψ3(x))

x1 (pixel)

1 580

-0.1

0

0.1

Im(  p3ψ3(x))

x1 (pixel)

-0.1

0

0.1

1 580x1 (pixel)

Re(  p1ψ1(x))

Experiment
Theory

-0.1

0

0.1

1 580

Re(  p2ψ2(x))

x1 (pixel)

1 580

-0.1

0

0.1

Im(  p2ψ2(x))

x1 (pixel)

|⟨ψ1         |ψ1    ⟩|2=92.9%±0.3%exptheory |⟨ψ2         |ψ2    ⟩|2=96.8%±0.7%exptheory

Am
pl

itu
de

b c
|⟨ψ3         |ψ3    ⟩|2=92.4%±0.7%exptheory

Am
pl

itu
de

FIG. 5. The reconstructed HG quantum state for (a) |ψ1〉, (b) |ψ2〉,
and (c) |ψ3〉, respectively. The real (imaginary) part is shown in the
left (right) panel. The standard deviation of the experimental data is
denoted by the line width, which is generally too small to be visible.
The fidelity of each state reconstructed is shown at the top of each
corresponding subfigure.

verse profile of the field has only a 1D variation along the x
axis [see Eq. (2)]. Although our protocol cannot be directly
applied to a general two-dimensional (2D) spatial field, it is
possible to reshape a finite-sized 2D field into a 1D field [55]
to further generalize our approach. A potential realization of
the 2D-to-1D beam reshaping is discussed in Supplemental
Material [56], which includes Refs. [10, 23, 40, 42, 57–67].

Although many quantum techniques use single-pixel detec-
tors, advances in detector development have led to many op-
tions for the use of high-performance detector arrays, such as
SPAD arrays [58, 59], cooled CCD cameras [10, 23], electron-
multiplying CCD cameras [60, 61] and intensified CCD cam-
eras [62–67]. Comparing with raster scanning techniques us-
ing a single-pixel detector, the parallel measurement via a M -
pixel detector array is generally M times faster, which can
be used to apply our method to quantum applications at the
single-photon level. It is worth mentioning that due to the pho-
ton loss induced by the polarizers in the PolarCam, the photon
efficiency of our method is suboptimal. However, the Polar-
Cam can in principle be replaced by polarizing beamsplitters
and a regular camera to eliminate the photon loss [42]. In
contrast, the standard raster scanning technique requires the
use of two scanning apertures, in which the photon efficiency
drops by a factor ofN for aN -dimensional photon state due to
the aperture postselection loss. Meanwhile, the scanning tech-
nique also would increase the measuring time by a factor of
N2. Therefore, our method can significantly outperform the
standard raster scanning technique in terms of both measure-
ment speed and photon efficiency (see Supplemental Material
[56] for details).

Conclusion.—In this work, we demonstrated a direct to-
mography protocol that can efficiently characterize a high-
dimensional density matrix in the position basis for general
quantum states, where the data acquisition time is indepen-
dent of the dimension of the Hilbert space. Two different
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mixed states were prepared and characterized with a high fi-
delity in our demonstration. Singular value decomposition
was implemented to reconstruct the pure states that constitute
the prepared mixed state, which can potentially be useful for
the analysis of spatially incoherent fields. We anticipate that
our protocol can inspire the development of high-dimensional,
time-efficient quantum metrology techniques and can be used
as a powerful tool for the experimental study of the spatial
mutual coherence function of optical fields, which plays an
important role in Michelson stellar interferometry, the super-
resolution imaging [68] and optical coherence theory [40].
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