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Sphere packing is an ancient problem. The densest packing is known to be a face-centered cubic
(FCC) crystal, with space filling fraction φFCC = π/

√
18 ≈ 0.74. The densest “random packing,

Random Close Packing (RCP), is yet ill-defined, although many experiments and simulations agree
on a value φRCP ≈ 0.64. We introduce a simple absorbing-state model, Biased Random Organization
(BRO), which exhibits a Manna class dynamical phase transition between absorbing and active states
that has as its densest critical point φcmax ≈ 0.64 ≈ φRCP and, like other Manna class models, is
hyperuniform at criticality. The configurations we obtain from BRO appear to be structurally
identical to RCP configurations from other protocols. This leads us to conjecture that the highest
density absorbing state for an isotropic Biased Random Organization model produces an ensemble
of configurations that characterizes the state conventionally known as RCP.

Equal sized spheres poured into a container can form
many stable and metastable configurations that fill the
volume to solid volume fractions ranging from ∼ 0.55 to
∼ 0.74 depending on friction and protocol used [1, 2].
The fact that many different experimental [3–5] and sim-
ulation [6–8] protocols with frictionless spheres tend to
give a maximum packing fraction φ ≈ 0.64 suggests a
special state that Bernal [4] referred to as “random close
packing”. There have been many attempts [9–17] to de-
fine this state mathematically, statistically and physi-
cally. RCP is important fundamentally and practically
in problems ranging from the number of gumballs in a
jar, to the viscosity of suspensions [18], and the rigidity
of amorphous, jammed [19] and glassy [20, 21] materi-
als. In this Letter, we propose that the densest critical
state in the conserved directed percolation (Manna) uni-
versality class has many of the properties previously as-
sociated with RCP, which has ramifications for the long-
range structural organization of RCP.

Our path to this problem began with a beautiful ex-
periment on time reversibility of low Reynolds number
flow that found that below a volume fraction depen-
dent threshold cyclic shear strain, γc(φ), particles in a
highly viscous fluid would return to the same position
every cycle following reversible trajectories [22]. Above
γc(φ) their behavior is diffusive and chaotic. A simple
toy model, Random Organization, RO, captures the es-
sential features of this transition [23]. In RO, phantom
particles are said to be active if they overlap another
particle under cyclic affine shear. After each cycle, par-
ticles are returned to their beginning position and active
particles are given a random uncorrelated displacement
with typical magnitude ε. Particle configurations evolve
with time either to an absorbing state, where no parti-
cles overlap, or they settle into a continuously evolving
steady state with a finite fraction of active particles. Or-
ganization proceeds by a competition between generally
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lower density quiescent regions being infected by gener-
ally higher density active regions and active regions dy-
ing out. The characteristic time, τ ∼ |γ − γc(φ)|−ν‖ , to
organize into an absorbing state or a dynamical steady
state diverges as the threshold strain is approached from
above or below γc(φ) indicating a second order dynamic
phase transition. Similarly, τ ∼ |φ − φc(γ)|−ν‖ for fixed
γ. The model is similar to early epidemic models such as
directed percolation and is in the same universality class
as the discrete Manna model [24, 25].

Unlike conventional thermodynamic phase transitions
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FIG. 1. The critical volume fraction φc for 3D Biased Random
Organization (BRO) as a function of the displacement mag-
nitude ε. Traces correspond to different ratios of variance of
repulsive to random displacements δ, where δ = 1 (blue) con-
sists of purely repulsive displacements whereas δ = 0 (green)
is Random Organization (RO) with all random displacements.
The small ε limit for any ratio of repulsive displacements
φc(ε→ 0) ≈ 0.640± 0.001 ≈ φRCP .
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FIG. 2. Manna universal scaling of Biased Random Organization. (a) The steady state activity f∞a is plotted as a function
of the reduced control parameter (φ− φc)/φc showing a clear transition between absorbing f∞a = 0 and active f∞a > 0 states.
The data for decreasing ε values of the BRO model are collapsed with the RO model δ = 0 (blue squares) and the Manna

model (light blue diamonds). Collapse requires rescaling the reduced control parameter by φ
(−1/β)
c and rescaling the activity

by A/
√
ε. (b) The same data from (a) are plotted log-log to show power law scaling of f∞a above the critical point. All models

show Manna/RO class scaling f∞a ∼ (φ− φc)β where β = 0.84 in 3D. (c) For δ = 1 and epsilon corresponding to parts (a) and
(b), the characteristic relaxation times τ from a Poisson random initial state to an absorbing state are plotted to show power
law divergence at φc.

which exhibit diverging density or order parameter fluc-
tuations at their critical point [24], the critical states of
these dynamical absorbing state models have vanishing
long range density fluctuations at critical [26–28] - they
are hyperuniform [29–31]. Recently we demonstrated this
hyperuniformity experimentally [32]. However, the ex-
perimental φc’s were considerably higher than those pre-
dicted by RO. We, and several previous authors, modi-
fied RO with repulsive displacements in studies of jam-
ming [15, 17] and hyperuniformity [33]. Biasing the dis-
placements of overlapping particles away from each other
shifted the critical density upward [32, 34].

BRO, an absorbing-state model, remains in the Manna
universality class [24], and exhibits hyperuniformity at
critical with the structure factor, S(q → 0) ∼ qα. For
all Manna class models, α3D = 0.25 [26]. To characterize
these critical configurations, we show that BRO and two
other jamming protocols for RCP have very similar S(q),
with the hyperuniformity scaling exponent α ∼ 0.25. We
also find isostatic coordination Z = 6, and a similar ra-
dial distribution function as found in several previous
RCP experiments [4, 35–37] and simulations [8, 33, 38],
giving us confidence to conclude that the critical states
of BRO are RCP configurations. RCP’s identification as
a dynamical phase transition critical point may provide
new insights into disorder, jamming and glass transitions.
BRO at the maximum density critical point seems to pro-
duce the same ensembles as previous protocols.

In the BRO model, active (overlapping) particles are
given two displacements: a repulsive displacement of
magnitude

√
δε, away from the center of the overlapping

cluster, and a randomly-directed displacement of mag-
nitude

√
1− δε, where for a given simulation δ is fixed

at a value between 0 and 1 while displacement magni-
tudes are randomly distributed between 0 and εd/2, for

particle diameter, d, which determines the volume frac-
tion, φ. Thus, the BRO model has two control parame-
ters, δ and ε (See Supplemental Information with refer-
ences [8, 23, 32, 33, 39–46]). Hereafter, we only consider
isotropic unsheared dynamics: γ = 0.

The addition of repulsive bias to the particle displace-
ments vastly changes φc in the region where ε is small,
as shown in Figure 1. In the ε → 0 limit, φc increases
well above the unbiased RO limit φc(ε → 0, δ = 0) =
φcmax(δ = 0) ≈ 0.20, and plateaus at φc(ε→ 0, δ > 0) =
φcmax(δ > 0) = 0.640 ≈ φRCP . This is not only the case
for δ = 1, but for any δ > 0. For all δ and ε >>particle
separations, displacements are effectively random, hence
mean-field, and we find φc(ε → ∞, 0 ≤ δ ≤ 1) → 0.06.
φc errors are roughly constant: 0.001 for each point.

To test whether BRO remains in the Manna univer-
sality class, we measure the critical exponents for the
steady-state activity f∞a and the relaxation times τ from
a random initial state for δ = 1. Steady-state values
of f∞a for BRO with decreasing values of ε, for the RO
model with ε = 1 and for the Manna model collapse when
rescaling f∞a by A/

√
ε and rescaling (φ−φc)/φc by φ−1/β ,

where β is the activity exponent, as shown in Figure 2a.
A is a fitted scaling parameter that is 1 for the RO and
BRO models and 20 for the Manna model. A reflects
the difference in how excluded volume is implemented in
different models. For all models, f∞a vanishes at φc with
f∞a ∼ (φ − φc)β where β is a Manna critical exponent,
β = 0.84 in 3D, as shown in Figure 2b.

Similarly we investigate the relaxation time τ by fit-
ting the evolution of the activity to a form [23] fa(t) =
(fa(0)−fa(∞))e−t/τ (t/t0)−ξ+fa(∞), where ξ = 0.7±0.1
for all simulations in 3D. Relaxation times for BRO scale
as τ ∼ |φ − φc|−ν‖ on both the absorbing and active
sides of the transition with the same ν‖ = 1.08 exponent
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FIG. 3. Random Close Packing structure at φc(ε → 0) for δ = 1. (a) The pair correlation function g(r) is plotted for critical
structures of BRO. All show an expected excluded volume region which corresponds to the particle size and a strong diverging
peak at the nearest neighbor separation in the ε → 0 limit. (Inset) The split in the second nearest neighbor peak occurs at
small epsilon (ε = 0.025d is shown). The cusps at r =

√
3d and r = 2d (–) are consistent with previous RCP studies. (b) A

log-log plot of g(r) at φc as a function of r/d− 1 emphasizes the power law decay of g(r) away from r = d. Small ε structures
at φc show g(r) ∼ (r/d − 1)−0.5 (−−). (c) The average contact number Z is counted for critical structures where Z is the
number of neighbors at a distance less than d + xcut from a target particle. For each structure, Z is undercounted if xcut is
too small, but as ε → 0, Z approaches a plateau at the isostatic limit Z = 6. The overcounted structures fit a form close to
previous RCP calculations [33].

characteristic of the 3D Manna transition. Rescaling the
relaxation times by 1/ε on the absorbing side and plot-
ting them as functions of (φ − φc)/φc collapse the data,
as shown in Figure 2c.

In addition to a characteristic volume fraction φRCP ,
sphere packing experiments [4, 35–37] and simulations
[8, 33, 38] find universal structural features that char-
acterize RCP states. Correspondence between the BRO
critical point and previous studies of RCP requires that
structures found by BRO match those found by previous
methods; we choose the Lubachevsky-Stillinger (LS) [47]
and soft sphere algorithms [8] as benchmark models.

The pair correlation function g(r) measures the
isotropic real space pairwise particle correlations in the
system. For BRO with decreasing values of ε and δ = 1,
all critically organized structures exhibit an excluded
volume region between 0 < r < d (inactive particles
dont overlap). The first peak of g(r) corresponds to
the distance of nearest neighbors and becomes taller and
sharper as ε → 0, as shown in Figure 3a. We also ob-
serve a split in the second nearest neighbor peak for small
ε values with cusps at r =

√
3d and r = 2d, which is a

signature of RCP structures [33, 35] (Figure 3a, inset).

In RCP systems, short-range particle correlations are
characterized by two features: a delta function at |r| = d
followed by a power-law decay [48] g(r) ∼ (r/d−1)−1/2 as
r → d+. For critical BRO configurations, power law scal-
ing of g(r) is evident, but only over an appreciable range
as ε→ 0, Fig 3b. In this limit, it is also evident that the
nearest neighbor peak narrows, becomes taller, and the
position of its maximum shifts towards r = d, consistent
with delta-function scaling as ε → 0, in Figure 3a. The
integral of this peak is associated with another property
of RCP and Jamming: the average number of particles

in contact with a reference particle, Z. In BRO, parti-
cles are given finite repulsive displacements, so inactive
particles are never precisely in contact, but will touch
as ε → 0. As in previous studies [33] we count the par-
ticles whose surfaces are within a cutoff distance xcut,

defining Z(xcut) = (24φc)/d
3
∫ d+xcut

d
g(r)r2dr. For crit-

ical BRO, Z rises as xcut increases, plateauing close to
xcut ≈ ε/2, and rising again after. The second rise in
Z is largely independent of ε, making the plateau flatter
and more obvious as ε → 0. Fitting the plateau regions
to a power-law with a constant offset we find that the
plateau of Z approaches 6, matching the isostatic con-
dition expected for frictionless spheres, Figure 3c. Many
other RCP and jamming experiments [4] and simulations
[8, 17, 33], even those with inherent polymeric connectiv-
ity [49], find Z ≈ 6, and the power law that we find is
similar to the near-contact Z calculated in the LS model
[33]. The isostatic coordination has implications for the
mechanical properties of the packings, for example the
vanishing of the shear modulus at RCP, the source of
which is non-affine particle displacements [8, 50]. We
leave further investigation to future work.

Thinking of critically organized structures within the
framework of hyperuniformity [29] emphasizes the role of
long-range density correlations. There have been a few
studies of long-range correlations in RCP systems, but
with controversial results and significant disagreements
between experiments [51] and simulations [30]. We inves-
tigate the hyperuniformity of BRO by looking for power
law scaling of S(q → 0) ∼ qα. We calculate S(q) for fully
relaxed (t � τ) simulations at φc for various values of ε
and δ = 1. We find hyperuniform scaling S(q → 0) ∼ qα
with α ≈ 0.25 for all critical structures, even those with
critical volume fractions approaching φc → φRCP , Fig-
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FIG. 4. Random Close Packing is Manna class hyperuniform.
(a) The angularly averaged structure factor S(q) is plotted
for BRO structures at φc. Different traces correspond to de-
creasing ε values where all critical structures are hyperuniform
with Manna universal scaling S(q → 0) ∼ q0.25±0.01 for all ε
values. (b) The critical structure factor S(q) for three models
of RCP: Lubachevsky-Stillinger (data from Donev et al.) [30],
soft spheres and BRO. The structure factor calculated from
LS and soft spheres agree remarkably well with the ε→ 0 limit
of BRO, all three showing S(q → 0) ∼ qα. Manna class hype-
runiform scaling; αLS = 0.24± 0.02, αSoft = 0.27± 0.03, and
αBRO = 0.26± 0.02. (Inset) The relative difference structure

factor ∆S(q) =
∫ 5(2π/d)

0
|S(q, φ)/S(q, φc) − 1|dq is a measure

of S(q) away from φc. Though all models agree at the critical
point ∆S ≈ 0, they differ on both sides of the transition.

ure 4a. α = 0.25 is the critical exponent for 3D Manna
class systems [26], and is the same exponent found re-
cently in experiments on critically sheared colloids [32].
The robustness of this hyperuniform scaling exponent
provides more evidence that BRO is in the Manna uni-
versality class.

Previous studies of RCP structures using the
Lubachevsky-Stillinger algorithm identified hyperuni-
form scaling near the maximally random jammed (MRJ)

point [9, 30]; however, from a linear plot, they concluded
S(q → 0) ∼ q1. We reproduce those data here, and in-
clude results from our own simulations of the soft sphere
model relaxed by conjugate gradient energy minimization
[8]. Although there is a region from q ∼ 0.08 − 0.5 that
can be fit with a power α ≈ 1, over the lower q region,
q ≈ 0.006 − 0.08 we find αLS = 0.24 ± 0.02. The three
RCP models display very similar S(q) for all values of q.
While there is surprising agreement in S(q) at φRCP , this
is not the case away from φRCP . A measure of the differ-

ence is ∆S(q) =
∫ 5(2π/d)

0
|S(q, φ)/S(q, φc)− 1|dq. At φc,

all models have approximately the same ∆S(q). How-
ever, the inset of Figure 4b shows significant differences
between the models on both sides of the transition, which
implies that BRO is not a disguised form of a previously
studied model. It is remarkable that several different pro-
tocols converge to RCP but approach it differently as a
function of φ.

There have been many previous protocols to find
RCP. Several authors use jamming in their construc-
tions [8, 9, 14, 15, 17, 52], others use a peaked statistical
ensemble of accessible states from energy minimization
[11, 52], and others look for randomness as a minimiza-
tion of many order parameters, e.g. MRJ [9]. A differ-
ent form of hyperuniformity, “contact hyperuniformity”,
was found for jammed packings [53]. BRO at the maxi-
mum density critical point seemingly produces the same
ensemble as many of the previous protocols. We note
that regarding RCP as the highest density critical point
of a dynamic phase transition requires invoking neither
randomness, nor jamming, nor hyperuniformity in the
outcome, but rather they are emergent properties.

Unresolved is the question of why the BRO critical
point is seemingly coincident at φRCP with the results of
previous protocols. In some sense, the BRO critical point
is similar to the soft sphere calculations in that there are
directed repulsive steps in both. Soft spheres equilibrate
slower as RCP is approached from both sides. Our pre-
liminary investigation suggests that the soft sphere model
may also be related to a dynamical phase transition as
also suggested in Ref. [17].

BRO can be investigated in other dimensions. In 1D,
the densest monodispersed absorbing state has φc = 1
and is trivially a 1D crystal (while for RO φc ≈ 0.9).
In 2D, we find the densest mono-dispersed BRO absorb-
ing state approaches a densely packed hexagonal crystal
with φc ≈ 0.91, (while for RO φc ≈ 0.45). With bi-
dispersed disks, the results are similar to jammed states
found in the literature, but we also find S(q) ∼ qα with
α ≈ 0.45 which is the 2D Manna hyperuniformity expo-
nent (see Supplemental Information), lending credence to
our claim that RCP in 3D is indeed hyperuniform with
Manna class exponents. We have not yet studied BRO in
greater than 3D. In 3D, BRO yields FCC crystals when
sheared, hence the “isotropic” in our conjecture.

Biased Random Organization is a well-defined dynam-
ical model and protocol, especially in the ε → 0 limit.
We have demonstrated that in the thermodynamic limit
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(infinite size system) for vanishingly small displacements
(ε → 0), the highest density absorbing state has many
properties coincident with those associated with RCP or
“point-J” in the jamming phase diagram. With this as-
sociation of RCP with the critical point of a dynamic
phase transition we expect progress in mathematically
calculating φRCP , gaining insight into the properties of
the jamming and glass transitions and studies of amor-
phous systems in general.
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