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The lack of methods to experimentally detect and quantify entanglement in quantum matter impedes our abil-
ity to identify materials hosting highly entangled phases, such as quantum spin liquids. We thus investigate the
feasibility of using inelastic neutron scattering (INS) to implement a model-independent measurement protocol
for entanglement based on three entanglement witnesses: one-tangle, two-tangle, and quantum Fisher informa-
tion (QFI). We perform high-resolution INS measurements on Cs2CoCl4, a close realization of the S = 1/2
transverse-field XXZ spin chain, where we can control entanglement using the magnetic field, and compare
with density-matrix renormalization group calculations for validation. The three witnesses allow us to infer
entanglement properties and make deductions about the quantum state in the material. We find QFI to be a
particularly robust experimental probe of entanglement, whereas the one- and two-tangles require more careful
analysis. Our results lay the foundation for a general entanglement detection protocol for quantum spin systems.

Introduction.—Quantum entanglement is increasingly con-
sidered a vital resource for novel effects and applications [1].
Entanglement is also central to our understanding of many-
body systems [2, 3], where it forms a deep connection be-
tween condensed matter physics and quantum information.
Phenomena such as quantum spin liquids [4], topological or-
der [5], quantum criticality [6, 7], and thermalization in quan-
tum systems [8], are all inherently related to entanglement
properties. It is crucial to develop experimental protocols to
detect and quantify entanglement in the solid state, in order to
allow unambiguous and rapid identification of quantum ma-
terials suitable for new applications, and novel insights into
complex quantum phenomena.

Due to the rich structure of many-body states, a number of
different entanglement measures have been introduced. The
most important example in condensed matter theory is en-
tanglement entropy (EE), used to quantify bipartite entangle-
ment. Yet there is no “EE observable” that can be probed di-
rectly, which makes experimentally quantifying entanglement
in many-body systems challenging [2, 9]. Although EE has
been measured in cold-atom [10, 11] and photonic systems
[12], neither approach is suitable for probing entanglement in
macroscopic condensed matter systems.

In special cases, entanglement can be inferred through neu-
tron scattering experiments. For instance, two-spin entangle-
ment within and between dimers [13, 14], and entanglement
between two molecular magnet qubits [15] have been char-
acterized with neutrons. Also, certain low-dimensional spin
systems can be shown to have entanglement via close com-
parison with theory [16–18]. However, these approaches rely
on tractable models, with either small Hilbert spaces or spe-

cial ground states, which are limited to a handful of systems.
For most strongly correlated systems, such methods are not
applicable, calling for model-independent approaches.

A promising approach, which we explore in this Letter, is
using entanglement witnesses (EWs) [2, 3, 9], i.e. observ-
ables that can be used to identify some subset of entangled
states. We consider (i) one-tangle (τ1) [19–21], (ii) concur-
rence or two-tangle (τ2) [13, 15, 19, 20, 22], and (iii) quan-
tum Fisher information (QFI) [23–25]. These EWs witness (i)
entanglement between a spin and the rest of the system, (ii)
pairwise entanglement, and (iii) multipartite entanglement, re-
spectively, and thus provide complementary information. All
three EWs are accessible to inelastic neutron scattering (INS)
experiments. τ1 and τ2 can be obtained from ordered mo-
ments and spatial spin-spin correlations [21], while QFI can
be expressed as an integral of the dynamical spin structure fac-
tor (DSF) [25], S (k, ~ω). This powerful formulation of QFI
has been applied to experiments on Heisenberg spin chains
[26, 27], but remains otherwise largely unexplored.

We contrast EE and the mentioned EWs in the spin-1/2
transverse-field XXZ chain. The one-dimensional setting con-
fers an enhanced susceptibility to fluctuations and a higher de-
gree of theoretical tractability, making it an excellent proving
ground for our EW protocol. The system hosts two distinct
quantum critical points (QCPs) and a classical, minimally en-
tangled point, and thus provides a range of interesting behav-
iors. We study this model numerically using the density ma-
trix renormalization group (DMRG) [28–30]. We also report
high-resolution INS data on the chain compound Cs2CoCl4,
known to be an excellent realization of the XXZ model [31–
37]. We find that QFI values extracted from experiment and
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FIG. 1. (a) Schematic phase diagram for −1 ≤ ∆ ≤ 1. There are
two quantum critical points at hx = 0 and hc, and a classical point
at a factoring field hf , close to hc. For ∆ = 0.25, hf ≈ 1.58J and
hc ≈ 1.6J. The distance hc − hf is exaggerated for clarity. (b) Energy
gap, and (c) magnetization and staggered magnetization [38] from
DMRG for ∆ = 0.25, J = 0.23 meV. Non-vanishing ∆Ei, my

st at
hx = 0, and my

st , 0 at hx ≥ hc, are due to a finite-size effect in the
DMRG calculation.

simulation show good agreement, demonstrating it is an ex-
perimentally viable probe of entanglement. We also find the
experimental one-tangle to deviate from theory in a potentially
revealing manner, whereas the two-tangle extraction requires
spin-polarization-resolved experiments.

Transverse-field XXZ chain.— A particularly rich yet sim-
ple system is found in the XXZ chain,

H =

L∑
i=1

[
J
(
S x

i S x
i+1 + S y

i S y
i+1 + ∆S z

i S
z
i+1

)
+ hxS x

i

]
, (1)

where S α
i , α ∈ {x, y, z}, are spin-1/2 operators, ∆ represents

exchange anisotropy, and hx is a uniform magnetic field in the
transverse (x̂) direction. For Cs2CoCl4 we take the parameters
J = 0.23 meV and ∆ = 0.25 [34], but we note ∆ ≈ 0.12
has been proposed elsewhere [36, 37]. (We consider other ∆

values in the Supplemental Material (SM) [38].) The model
is also relevant to quantum simulation using cold atoms in
optical lattices [39].

For hx = 0, the model can be solved exactly using the Bethe
ansatz [40–42]. However, a finite transverse field breaks in-
tegrability, and induces a new source of fluctuations when
∆ , 1. The model is particularly nontrivial in the spin-flop
region, −1 < ∆ < 1 [43], where its phase diagram contains
two QCPs, as shown in Fig. 1(a). At the first QCP, hx = 0,
it is equivalent to a gapless Luttinger liquid, which is de-
scribed by a conformal field theory (CFT) with central charge
c = 1 [6]. At hx > 0, a gapped, long-range Néel order de-
velops, with a staggered magnetization component, my

st, along
ŷ, and a magnetization component, mx, along x̂ [38]. This
order remains up to a critical field, hc, where the system is
described by a c = 1/2 CFT. Above hc a gapped, nondegener-
ate spin-polarized (paramagnetic) phase develops and mx sat-
urates asymptotically. There also exists a “classical” or fac-
toring field, hf(∆) = J

√
2(1 + ∆), where the ground state is

exactly of the classical spin-flop Néel type [44, 45]. At hf ,
quantum fluctuations are precisely balanced by the field, and
entanglement estimators indicate an entanglement transition
[21, 46–48].

The model has previously been studied using Jordan-
Wigner fermion mean-field theory [43, 49], exact diagonal-
ization [50], DMRG [49, 51, 52], and quantum Monte Carlo
methods [21]. The real-frequency dynamics were studied in
Refs. [49, 52], where the mean-field theory [49] was found
to give qualitatively different spectra to the DMRG calcula-
tion [52] at hx ≤ hc. Here we use a T = 0 DMRG method
described in SM [38]. Care is taken to relate our finite-size
(L = 100 unless stated otherwise) results in the spin-flop
region to the thermodynamic limit [38, 49, 52]. There is a
finite-size gap between a unique ground state and the first ex-
cited state, ∆E1 = E1 − E0, where En is the energy of the
nth state. The physical excitation gap is given instead by
∆E2 = E2 − E0 > ∆E1, as shown in Fig. 1(b). Magnetiza-
tion is plotted in Fig. 1(c).

Experimental method.—INS data on a high-quality 9 g
solution-grown Cs2CoCl4 single crystal were collected using
the direct-geometry time-of-flight spectrometer IN6 at Insti-
tut Laue-Langevin, with monochromatic incident neutrons of
2.35 meV. Cooling was provided by a dilution refrigerator,
and data was collected at 70 mK (≈ 0.026J ≈ 6 µeV). The
sample was oriented with crystallographic b, c-axes in the hor-
izontal scattering plane. Magnetic fields up to 2.5 T were
applied along the a-axis using a vertical field cryomagnet.
For more details about the experiments, see Ref. [53]. Raw
neutron counts were normalized by the integrated quasielas-
tic incoherent scattering to account in a first approximation
for neutron absorption from the sample. The nonmagnetic
background was modeled and subtracted, and resulting counts
were divided by the squared spherical magnetic form factor
for Co2+, so resulting intensities are proportional to the purely
magnetic scattering cross section.

The Co2+ ions in Cs2CoCl4 form a Kramers doublet, which
can be described by an effective spin S = 1/2. Magnetic in-
teractions between Co2+ ions are quasi-1D along the b-axis,
with exchange interaction much lower than the energy gap to
higher crystal field levels, resulting in an effective spin-1/2
Hamiltonian with strong XXZ anisotropy. Finite 3D inter-
chain couplings (estimated to be at least an order of magnitude
smaller than J [33, 37, 54, 55]) stabilize long-range order be-
low TN = 0.212 K with ordering wavevector q = (0, 1/2, 1/2),
where spins point near the b-axis. Transverse magnetic fields
applied along the a-axis suppress this order at hexp

c = 2.10(4)
T [34]. This field direction is at an ≈ 40◦ angle to the xy easy
plane of the spins. This angle—along with interchain cou-
plings [55, 56]—is expected to renormalize transition fields
compared to the in-plane field case considered in Eq. (1), but
not to change the qualitative content of the phase diagram.
To compare experimental and DMRG results, we scale fields
such that hDMRG

c ≈ 1.604J = hexp
c .

Spectra.—Figure 2 compares INS spectra for Cs2CoCl4
with spectra calculated for Eq. (1). For more field strengths



3

(a) INS 0 T

0.0

0.5

0 1 2 3
S(k, h̄ω) (meV−1)

(b) DMRG (c)

0

5

10

15

20

INS
DMRG

(d) 1 T

0.0

0.5

h̄
ω

(m
eV

)

(e) (f)

0

5

10

χ
′′

ta
n

h
(

h̄
ω

2
k
B
T

)

(g) 1.5 T

0.0

0.5
(h) (i)

0

2

4

6

(j) 2.5 T

0 π
2

π 3π
2

0.0

0.5

k

(k)

0 π
2

π 3π
2

k

(l)

0.00 0.25 0.50 0.75
0

5

10

15

h̄ω (meV), k = π

FIG. 2. Left column: INS spectra for Cs2CoCl4 at four representa-
tive field strengths. Center column: Calculated spectra for the XXZ
chain at matching fields, accounting for the experimental polarization
factor. Right column: QFI integrand at k = π. White dashed lines in
(a),(b) bound the two-spinon continua. Throughout we designate the
wavevector component k along the chain in units of 1/b.
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FIG. 3. Theoretical DSF for J = 0.23 meV, ∆ = 0.25, and
hx = 1.58114J ≈ 2.07 T ≈ hf . Dashed white lines show linear spin
wave energy predictions [45]. Agreement with DMRG is excellent
at k = π in (a), and k = 0 in (b),(c). Elsewhere in the Brillouin zone
the dispersion is significantly modified by anharmonic terms in the
full spin-wave Hamiltonian. Note that the experimental polarization
factor has not been applied, see [38, Eq. (S5)].

and processing details, see SM [38]. At low fields the data
qualitatively agrees with simulations of the ideal chain model,
Eq. (1). Interchain couplings become qualitatively important
near hc, where the field-dependent gap is of similar strength
to the interchain exchange. Interchain couplings also pro-
duce a band splitting at high fields, as seen in Fig. 2(j)–(k),
whereas the DMRG spectrum reduces to a single magnon
branch. Hence, we conclude that Cs2CoCl4 is 1D-like for
weak and intermediate fields. Precise modeling of interchain
effects is beyond the scope of this work.
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FIG. 4. (a) Entanglement entropy, S vN, from DMRG as a function
of hx. The vertical line indicates the factoring field, where S vN ≈ ln 2
(horizontal line). For hx > hc there is a steep drop in entropy as
the system enters a polarized phase with a non-degenerate ground-
state. The inset shows EE near hc. (b) The approximate one- (τ1)
and two-tangles (τ2) reach a minimum at hf . (c) QFI from INS and
DMRG S (k, ~ω). Above the horizontal dashed line QFI indicates the
presence of at least bipartite entanglement. Below it QFI cannot be
used to distinguish separable and entangled states. The polarization
factor (PF)-corrected INS fQ line is obtained by scaling f INS

Q by the
ratio between the two DMRG fQ values [38].

At zero field the main contributions to the DSF come from
the two-spinon continuum [57, 58], bounds of which are
drawn in Fig. 2(a)–(b). At finite field the excitation branches
begin to split [Fig. 2(d),(e)], eventually decoupling the up-
per branch from the low-energy excitations, forming a high-
energy feature at ~ω ≥ 0.4 meV. As Ref. [52] noted, this
feature is beyond the mean-field prediction [49]. Here we
see it is present in the experimental material [panels (d),(g)]
and DMRG [panels (e),(h)]. The intensity of this high-energy
feature weakens as hc is approached from below, and as
Fig. 2(j),(k) show, it disappears above hc. To understand its
origin, it is instructive to consider the factoring field. While
the ground state at hf is classical, the dynamics cannot be fully
described using linear spin-wave theory (LSWT) [45, 59].
For Eq. (1) the dynamics is LSWT-like only near k = π
for S xx (k, ~ω), and near k = 0 for S yy/zz (k, ~ω) [45]. As
Fig. 3 shows, this behavior agrees well with DMRG. The
high-energy feature vanishes at k points where LSWT is ex-
act, heavily suggesting its origin is in multi-magnon physics,
as proposed in Ref. [52].

Entanglement.—We now investigate the quantum phase
transition (QPT) of Eq. (1) and Cs2CoCl4 using entanglement
measures. Figure 4(a) shows half-chain von Neumann EE. At
QCPs, in a system of length L with open boundaries, it is ex-
pected to follow the CFT expression [7], S vN = c

6 ln
[

L
π

]
+ C,

where C is a non-universal correction. We observe approxi-
mately logarithmic scaling at the QCPs, and saturation of S vN
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for most non-critical fields [6]. Notably, we find at hf that
S vN = ln 2 to good approximation, consistent with a two-fold
classical ground-state degeneracy.

Another sharp signature of the classical state has previously
been found using entanglement estimators [21, 47, 48]. We
consider one-tangle, τ1, which quantifies entanglement be-
tween a single site and the rest of the system, and two-tangle,
τ2, which quantifies the total pairwise entanglement in the sys-
tem, and satisfies τ2 < τ1 [19, 60]. For translation-invariant
S = 1/2 systems, τ1 can be defined in terms of spin expec-
tation values at a given site j, τ1 = 1 − 4

∑
α

(
〈S α

j 〉
)2

. It is
useful for interpreting experiments, with the caveat that it is
only strictly defined at T = 0. We approximate τ1 by keeping
only ferro- and antiferromagnetic ordered moments [38]. The
theoretical prediction is shown in Fig. 4(b), along with experi-
mental results obtained [38] using 80 mK (≈ 0.03J) data from
Ref. [34]. At zero field the experimental τ1 is reduced from
the theoretical value due to magnetic ordering at low temper-
ature, but still indicates substantial entanglement. We discuss
the high τ1 at B > 2 T later.

Next, two-tangle is defined as τ2 = 2
∑

r,0 C2
r , where Cr is

the concurrence for separation r. Cr for the S = 1/2 XXZ
model absent spontaneous symmetry breaking (my

st = 0) can
be defined [20–22, 46] Cr = 2 max

{
0,C′r,C

′′
r
}
, where

C′r =
∣∣∣〈S y

i S y
i+r〉 + 〈S z

i S
z
i+r〉

∣∣∣ −
√(

1
4

+ 〈S x
i S x

i+r〉
)2

− (mx)2,

(2)

C′′r = 〈S x
i S x

i+r〉 +
∣∣∣〈S y

i S y
i+r〉 − 〈S z

i S
z
i+r〉

∣∣∣ − 1
4
. (3)

This definition acts as a lower bound for pairwise entangle-
ment in the symmetry-broken state [61, 62]. While such
correlation functions are straightforward to compute theoreti-
cally, for anisotropic systems they require spin-polarization-
resolved techniques to measure experimentally. Since we
have not conducted such experiments, we plot only the the-
oretical τ2 in Fig. 4(b). (In [38] we simulate a polarized INS
experiment by using DMRG to correct for polarization fac-
tors (PFs), and estimate concurrence and τ2 from unpolarized
data. We find rough agreement between experiment and the-
ory at low fields, suggesting τ2 could be a reliable EW with
carefully performed experiments.)

Finally, we come to the quantum Fisher information. The
QFI density, fQ, can be expressed [25]

fQ(k,T ) =
4
π

∫ ∞

0
d(~ω) tanh

(
~ω

2kBT

)
χ′′(k, ~ω,T ), (4)

where the dynamical susceptibility, χ′′, is linked to the DSF
through the fluctuation-dissipation theorem, χ′′ (k, ~ω,T ) =

tanh (~ω/2kBT) S (k, ~ω), and S (k, ~ω) is normalized per
site (i.e. intensive) according to the the sum rule∑
α∈{x,y,z}

∫ ∞
−∞ d(~ω)

∫ 2π
0 dk S αα (k, ~ω) = S (S + 1). We are in-

terested in fQ(k = π), which witnesses entanglement associ-
ated with the AFM ordering [38]. Importantly, one can derive

bounds for fQ that can only be met by certain classes of en-
tangled states [63–65]. For unpolarized neutron scattering and
S = 1/2 systems, fQ > 3n, with n a divisor of L, indicates the
system is at least n + 1-partite entangled [38].

Figure 4(c) shows QFI determined from INS data normal-
ized against DMRG [38], and from DMRG with and without
PF applied. All QFI integrals used T = 70 mK. In all cases,
maximal fQ occurs at hx = 0. Unlike τ1, QFI is insensitive to
zero-field magnetic order since elastic peaks are suppressed
by the tanh factor in Eq. (4). The results indicate the experi-
mental PF suppresses QFI below the lower bound required to
observe bipartite entanglement. Using DMRG intensities we
can obtain PF-corrected values [38], which do witness at least
bipartite entanglement at the lowest measured fields. This
finding highlights that it is easy to underestimate the underly-
ing QFI due to resolution effects, and calls for higher resolu-
tion in future experiments. Additionally, it would be valuable
to derive tighter bounds on fQ, even if they do not apply in
general [66, 67].

There is qualitative and reasonably quantitative agreement
between DMRG and INS QFI at intermediate fields (/ 1.75
T), but not at high fields, where interchain coupling causes
deviations from ideal 1D behavior. In particular, interchain
coupling raises the field required for full polarization, which
may explain the observed increase in fQ above hc. As hx →
∞ we expect fQ to vanish. In addition, the f DMRG

Q minimum
occurs at hc, while the f INS

Q minimum appears at a lower field,
likely due to deviations from ideal 1D behavior.

Another deviation from 1D behavior is seen in the large τ1
at B > 2 T [Fig. 4(b)], which could naively be interpreted as
a sign that the system has entered a highly entangled state.
However, this scenario seems unlikely given the observed fQ
behavior, and suppression of magnetic fluctuations at high
field. Instead, τ1 is likely overestimated in this region due
to spin correlations not captured by the ferro- and antiferro-
magnetic ordered moments used to evaluate τ1, induced by
the small, but finite interchain couplings, which become rel-
evant for fields near hc where the spin gap is small and the
system is near-critical. Capturing such 3D effects is beyond
the scope of the current paper.

On its face, the low fQ values at hc may seem incompati-
ble with the prediction that CFTs have both large bipartite and
multipartite entanglement [68]. QFI near hc is low because
the Néel order parameter becomes vanishingly small near the
transition to the polarized state, such that there is little spectral
weight available for entanglement [69], and so fQ(k = π) is not
an effective witness at this QCP. We generically expect QFI
associated with antiferromagnetic ordering vectors to demon-
strate significant entanglement only away from paramagnetic
transitions. This illustrates a general limitation of EWs: they
are not universal [9]. Thus additional EWs would be required
to experimentally characterize the entanglement properties of
the transverse-field XXZ chain in the entire field range.

Conclusion.—We have contrasted several entanglement
measures by applying them to Cs2CoCl4 and the transverse-
field XXZ chain. Although we are unable to directly witness
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genuine multipartite entanglement in Cs2CoCl4, the strong
agreement between DMRG and INS QFI suggests QFI is al-
ready a useful tool for qualitative investigations of entangle-
ment properties, potentially even for topological phases [70–
72]. With improved resolution and bounds it can also prove
valuable for directly quantifying local entanglement in mate-
rials. QFI can be used in combination with other EWs, to infer
entanglement properties as a control parameter is tuned. Such
combinations may be required since paramagnetic QPTs re-
main inaccessible to fQ(k = π). We find both one-tangle and
QFI to be useful measures for inelastic experiments in gen-
eral, while two-tangle requires polarization analysis. We ex-
pect the model-independent approach we outline here, which
applies to many spectroscopic techniques and also to higher-
dimensional systems, will prove useful in identifying materi-
als with entangled states and highly quantum properties. As
the search for materials realizing exotic quantum states con-
tinues, EWs can allow clear discrimination between truly en-
tangled, and disordered non-entangled states.
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factor of the anisotropic Heisenberg chain in a transverse field,
Phys. Rev. B 68, 134431 (2003).

[50] A. Langari and S. Mahdavifar, Gap exponent of the XXZ model
in a transverse field, Phys. Rev. B 73, 054410 (2006).

[51] F. Capraro and C. Gros, The spin-1/2 anisotropic Heisenberg-
chain in longitudinal and transversal magnetic fields: a DMRG
study, Eur. Phys. J. B 29, 35 (2002).

[52] B. Bruognolo, A. Weichselbaum, J. von Delft, and M. Garst,
Dynamic structure factor of the spin- 1

2 XXZ chain in a trans-
verse field, Phys. Rev. B 94, 085136 (2016).

[53] C. Mukherjee, Neutron Scattering Studies on Low-Dimensional
Quantum Magnets, Ph.D. thesis, University of Oxford (2005).

[54] I. Chatterjee, Order–disorder transition in one-dimensional
quantum magnet, J. Magn. Magn. Mater. 265, 363 (2003).

[55] D. V. Dmitriev and V. Y. Krivnov, Quasi-one-dimensional
anisotropic Heisenberg model in a transverse magnetic field,
JETP Lett. 80, 303 (2004).

[56] D. V. Dmitriev and V. Y. Krivnov, Anisotropic Heisenberg chain
in coexisting transverse and longitudinal magnetic fields, Phys.
Rev. B 70, 144414 (2004).

[57] G. Muller, H. Thomas, M. W. Puga, and H. Beck, Quantum
spin dynamics of the one-dimensional planar antiferromagnet,
J. Phys. C 14, 3399 (1981).

[58] J.-S. Caux and J. M. Maillet, Computation of dynamical corre-
lation functions of Heisenberg chains in a magnetic field, Phys.
Rev. Lett. 95, 077201 (2005).

[59] J. H. Taylor and G. Müller, Limitations of spin-wave theory in
T = 0 spin dynamics, Phys. Rev. B 28, 1529 (1983).

[60] T. J. Osborne and F. Verstraete, General monogamy inequality
for bipartite qubit entanglement, Phys. Rev. Lett. 96, 220503
(2006).

[61] O. F. Syljuåsen, Entanglement and spontaneous symmetry
breaking in quantum spin models, Phys. Rev. A 68, 060301(R)
(2003).

[62] A. Osterloh, G. Palacios, and S. Montangero, Enhancement of
pairwise entanglement via Z2 symmetry breaking, Phys. Rev.
Lett. 97, 257201 (2006).

[63] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer,
W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Fisher
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