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We study an oblique spacetime crystal realized by a monoatomic crystal in which a sound wave
propagates, and analyze its quasienergy band structure starting from a tight-binding Bloch band
for the static crystal. We investigate Floquet-Bloch oscillations under an external field, which show
different characteristics for different band topologies. We also discover intraband Zener tunneling
beyond the adiabatic limit, which effectively converts between different band topologies. Our results
indicate the possibility of energy conversion between the sound wave and a DC electric field.

Introduction.— Periodically driven quantum systems
have a long history of study in physics, and have emerged
in recent years as a new playground for novel topological
properties [1–3] and quantum materials engineering [4].
There are also discussions on the tantalizing possibility
of the spontaneous formation of time crystals [5–8] and
spacetime crystals [9], adding new excitements to this
field. However, there is still much to be explored, and
there are challenges in understanding the electronic dy-
namics in such systems [10, 11].

According to a recently reported symmetry classifica-
tion [12], spacetime crystals fall into rectangular and
oblique categories, depending on whether the system
has separate translational symmetries in space and time.
Here we present an example for the latter, a monoatomic
crystal in which a single mode of sound wave propa-
gates. One can still make a Floquet-Bloch analysis, but
quasienergies and momenta are now defined modulo an
oblique Brillouin zone, and the usual concepts of Bloch
oscillations and Zener tunneling for Bloch bands can be
essentially modified. We find Floquet-Bloch oscillations
unraveling unusual types of band topologies. We then
discuss intraband Zener tunneling, which cannot occur
for a rectangular spacetime crystal, and the adiabatic
conditions for the validation of realizing one particular
band topology. Our results indicate a novel mechanism
for a quantum acoustoelectric generator that converts en-
ergy between the sound wave and a dc electric field.

Floquet-Bloch analysis for an oblique spacetime
crystal.— The oblique spacetime crystal considered here
is a monoatomic crystal with sound waves propagating
through it:

H(x, t) =
−~2

2M
∇2
x +

∑
R

V
(
x− R̃

)
(1)

with the atomic position being time-dependent R̃ = R−
A cos(κ ·R−Ωt). Here the (κ,Ω) is the momentum and
frequency of that sound wave, |A| is the oscillation ampli-
tude and R = n1a1 +n2a2 +n3a3 labels the lattice sites.
This Hamiltonian has the following translational symme-
tries: H(x, t+2π/Ω) = H(x, t) = H(x+R, t+κ ·R/Ω),
which defines an oblique spacetime lattice with non-

orthogonal lattice vectors: (0, 2π
Ω ) and (R, κ·RΩ ). Those

vectors determine the reciprocal lattice structure to be
also oblique, characterized by vectors: (κ,Ω) and (G, 0),
whereG is the reciprocal lattice vector of the correspond-
ing static crystal [14]. (When the sound wave vector κ
is rationally related to G, one may adopt a superlat-
tice point of view with a folded Brillouin zone, so that
the system may be taken as a rectangular spacetime su-
perlattice, but there will be seemingly ‘mysterious’ band
crossings due to the band folding.)

The Floquet-Bloch band theory of the oblique space-
time crystal goes quite parallel to that for a rectangular
spacetime crystal [13]. The eigenstates that respect pe-
riodicities of the Hamiltonian satisfy the time-dependent
Schrodinger equation:

H(x, t)|Ψ(x, t)〉 = i~∂t|Ψ(x, t)〉. (2)

We consider that |A| � lattice constants and the effect
of lattice vibration to leading orders in the amplitude
A: H(x, t) = H0(x) + A · H1(x, t) + · · · , where H0

is the Hamiltonian of the corresponding static crystal.
To simplify matters, we assume that the electrons are
all in the lowest Bloch band of the static crystal, which
is well-separated from all other bands energetically so
that mixing with them can be ignored when the lattice
vibration is turned on.

Under these conditions, lattice vibrations can still mix
a Bloch state {|ψk(x)〉} of energy ωg(k) in the lowest
band with its phononic “sidebands”, which differ with
each other by an integer multiple of the phonon energy
and momentum (Ω,κ). In other words, we can choose the
basis states to be the phonon replica of a Bloch state:

{|Φn,k(x, t)〉 ≡ e−inΩt|ψk+nκ(x)〉}, (3)

where n is the replica index. This basis can be made
orthonormal under a new inner product defined as

〈〈φ(x, t)|ψ(x, t)〉〉 ≡ 1

T

∫ T

0

dt

∫
dxφ∗(x, t)ψ(x, t) (4)

where T = 2π/Ω is the Floquet time period.
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Having the phonon replica basis, we can then expand
the eigenstate in Eq.(2) as:

|Φω,k(x, t)〉 =
∑
n

e−iωtfnk |Φn,k(x, t)〉, (5)

where (ω,k) are the quasienergy and quasimomentum,
respectively. Since those two quantities are conserved
modulo a Brillouin zone due to the periodicity in the
reciprocal space, we can use them as characterizations
for the eigenstates. Utilizing the orthonormal condi-
tions of the basis functions, we then find that the coef-
ficients fnk satisfy the following matrix eigenvalue equa-
tion:

∑
nHm,n(k)fnk = ~ωfmk where the elements of the

Kernel matrix H(k) are given by

Hm,n ≡ 〈〈Φm,k(x, t)|H(x, t)|Φn,k(x, t)〉〉−~nΩδmn. (6)

In the static limit ofA = 0, the matrixH is diagonal with
eigenvalues ωn(k) = ωg(k+ nκ)− nΩ, meaning that the
quasienergy bands are just the original Bloch band ωg(k)
shifted by the reciprocal lattice vector (κ,Ω). When lat-
tice vibration is turned on, off-diagonal elements of the
Hamiltonian will appear, which can open gaps at places
where the Bloch band crosses with its phonon replicas.
From the calculation, we also find a general relation be-
tween different quasienergy bands:

ωn+m(k) = ωm(k + nκ)− nΩ, (7)

which reflects the periodicity in the reciprocal space.

These general features of the Floquet-Bloch band
structure are illustrated in Fig.1 for the case of a (1+1)D
oblique crystal. The dashed curves are the unperturbed
bands with no oscillation, and we can see they are noth-
ing but replicas of the original cosine-shape Bloch band.
The solid curves are the band dispersion under time-
dependent perturbation. The red shaded area stands for
the Brillouin zone of the oblique spacetime crystal char-
acterized by two reciprocal lattice vectors: (G = 2π/a, 0)
and (κ,Ω). Without loss of physics, we take the region
containing the (n = 0) band ω0(k) as our first Brillouin
zone and all others as replicas.

Floquet-Bloch oscillations and band topology.—
Very interesting phenomena such as Bloch oscillations
and Zener tunneling can occur for Bloch bands in the
presence of an external electric field E, and it is nat-
ural to ask what can happen to the quasienergy bands
in a spacetime crystal. If we represent the field by a
vector potential and treat its time dependence adiabati-
cally, i.e., as very slow compared to all other time scales
in the problem, we can still use the quasienergy states as
solutions provided that the quasimomentum is replaced
as k → k − eEt/~. Then by using the perturbation
method, we can find an expression for the group velocity
ẋ. Together with the time-dependent quasimomentum,

Brillouin Zone

FIG. 1: Floquet-Bloch band structure for the (1+1)D oblique
spacetime crystal modeled by Eq.(6), originating from the
lowest Bloch band (dashed curves repeated over the Brillouin
zone) of the unperturbed system. The quasienergy dispersion
(solid curves) is calculated when a single mode of the sound
wave is turned on to a finite amplitude [15]. The labels on the
right vertical axis are the indices of the replicas of the same
single band as defined within the Brillouin zone.

the electronic motion in a quasienergy band can be sum-
marized as

k̇ = −eE
~
, ẋ =

∂ωn(k)

∂k
, (8)

which leads to a similar motion as Bloch oscillations that
we call Floquet-Bloch oscillations in the present con-
text [19]. Indeed, for the band structure in Fig.1, the
quasienergy is periodic in momentum, ωn(k + 2π/a) =
ωn(k), which implies, according to the equations of mo-
tion, that the velocity of electrons is also periodic in time
with period ~

eEG [20]. Similar discussion in the time-
driven system can be found in Ref.[21].

However, in the oblique spacetime crystal, quasienergy
bands can also, in principle, exhibit nontrivial periodicity
like ωn(k+κ) = ωn(k)+Ω or even more exotically ωn(k+
2π/a±κ) = ωn(k)±Ω, which will lead to new oscillation
periods of ~

eEκ and ~
eE (G±κ), respectively. Those unique

behaviors suggest different unusual band topologies [22].
To appreciate the possibilities of different topologies,

we project the Brillouin zone onto a torus by shearing it
into a rectangle and wrapping around to join the opposite
edges. A quasienergy dispersion is then characterized
by a pair of winding numbers Nω and Nk around the
two topologically distinct directions represented by the
reciprocal lattice vectors ω̃ = (κ,Ω) and k = (G, 0). One
can identify that

Nω =
i

2π

∫
BZ

Tr(U†ωdUω) =
T

2π

∫
BZ

dk
∂ω(k)

∂k
(9)

is the winding number for the Floquet operator Uω =
e−iω(k)T [23]. Similarly, one can think of Nk as the wind-
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FIG. 2: The topology of band dispersions (blue curves) as
seen in the Brillouin zone and on the torus after shearing
it and wrapping around along the reciprocal lattice vectors:
ω̃ = (κ,Ω) and k = (G, 0). Panel (a) corresponds to the class
shown in Fig.(1), Panel (b) is a class that has yet to be seen
and is only possible in oblique spacetime crystals [24]. Panel
(c) corresponds to typical edge states of topological Floquet
insulator in a higher dimension [3]. Panel (d) shows to a
unique gapless band structure that combines the topologies
in both (b,c).

ing number for the evolution operator along the other
spacetime periodic direction (a, κaΩ ):

Nk =
−i
2π

∫
BZ

Tr(U†kdUk) =

∫
BZ

[
a

2π
dk − T

2π
κadω

]
(10)

with Uk ≡ ei(ka−ω
κa
Ω ) and an extra “-” for convention.

The examples are illustrated in Fig.2, with Nω = 0, Nk =
1 for panel (a), Nω = 1, Nk = 0 in panel (b), and Nω =
−1, Nk = 1 in panel (c), corresponding to the Floquet-
Bloch oscillations with periods ∝ NkG+Nωκ.

Although we do not yet find the possibilities illus-
trated in panels (b) and (c) within the model studied in
this work, we discover a system called Oscillating Dirac
Comb that can possess a gapless band structure for a
specific oscillation amplitude (with more details given in
the S.M.[16]), as shown schematically in panel (d). We
have intentionally plotted the band in red and blue cor-
responding to the topologies in panels (b) and (c), re-
spectively. Taking the band structure as two different
topologies requires that the electron cannot be in a su-
perposition of the two segments plotted in blue and red
and must remain consistently on one of them when pass-
ing through the crossing point.

However, an exact gap closing in the oscillating Dirac
comb requires a fine-tuning of parameters [16], which is
not robust under any other perturbations and thus un-
realistic in real experiments. So, we have to allow such
system to have a tiny gap. In the next section, we will
see how the joint topology shown in panel (d) is possible

even with a tiny gap opened at the crossing point by dis-
cussing the intraband Zener tunneling and the adiabatic
conditions.

Intraband Zener tunneling and adiabatic
condition.— Zener tunneling refers to the breakdown
of adiabaticity when the rate of parameter change
cannot be regarded as small compared to the gap
between the energy levels, and there is also an analog of
the phenomenon between quasienergy levels in Floquet
systems [25–27]. In crystals under an electric field,
the crystal momentum becomes a time-dependent
parameter, and interband Zener tunneling has been well
studied. Here, due to the fact that in oblique spacetime
crystals, the gaps can be opened between a quasienergy
band and its periodic replicas (as shown in Fig. 1), we
can actually anticipate an intraband Zener tunneling
happening through such gaps.

The analysis of the intraband Zener tunneling is quite
similar to that of normal Zener tunneling between dif-
ferent Bloch bands. The key idea is that we consider
tunneling between two eigenstates |ψ1(k)〉 and |ψ2(k)〉:

|ψ1(k)〉 =
∑
n

fnk |Φn,k(x, t)〉

|ψ2(k)〉 =
∑
n

fnk−κ|Φn−1,k(x, t)〉,
(11)

sitting on two adjacent bands (replicas) labeled by 1
and 2, which have quasienergies ε1 = ω(k) and ε2 =
ω(k − κ) + Ω, respectively, with a direct gap ∆0. One
can check that |ψ1(k)〉 and |ψ2(k)〉 are orthonormal
(〈〈ψi(k)|ψj(k)〉〉 = δij). The reason why such tunneling
is indeed an intraband process is that |ψ2(k)〉 is equiva-
lent to |ψ1(k−κ)〉 since they differ by a reciprocal lattice
vector. The transition between |ψ1(k)〉 and |ψ1(k − κ)〉
then involves a shift in momentum, which is associated
with absorption or emission of a quantum of sound mode
(Ω, κ).

To make the tunneling happen, we apply an electric
field E, so that, from the equations of motion in Eq.(8),
electrons will move adiabatically along k axis. The real
wavefunction can be approximated as a linear combi-
nation of two eigenstates: |Φ(t)〉 = C1(t)|ψ1(k(t))〉 +
C2(t)|ψ2(k(t))〉. In the context of oblique spacetime crys-
tals, such expansion is valid under a vertical (or irra-
tional) basis representation [16].

Now, plugging the wavefunction |Φ(t)〉 into the time-
dependent Schrodinger Equation, we obtain the following
differential equation regarding C1,2:

i~
∂

∂t

[
C1

C2

]
− eE

[
A11 A12

A21 A22

] [
C1

C2

]
=

[
ε1 0
0 ε2

] [
C1

C2

]
(12)

where Amn ≡ 〈〈ψm(k(t))| (i∂k + x) |ψn(k(t))〉〉 is the
multiband Floquet-type Berry connection. This result
has the same form as in Bloch crystals but with modified
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FIG. 3: (a) Floquet-Bloch band structure with a very small gap of avoided crossing, calculated for the example of an oscillating
Dirac comb with oscillation amplitude A = 0.15 [16], with A, B and C labeling three typical points. The blue and red dotted
curves represent two paths with different topologies also illustrated in Fig.2(d). (b) The numerical results of the tunneling
process between two bands near the point B in panel (a) by solving Eq.(12) with initial conditions C1 = 1 and C2 = 0 under
different external field strengths. (c) The numerical results (stars) and the theory from Eq.(15) (curve) of the tunneling rate
of the electron from band 1 to 2. The green shade highlights the area where the tunneling rate is approximately one.

Berry connections. For spacetime crystal, Amn generi-
cally has two contributions:

Amn = i
∑
l

(fn)∗∂kfm +
∑
l

(fn)∗fmAk+lκ (13)

where f1 → f lk and f2 → f l+1
k−κ. The first term is the

Floquet contribution, while the second term is the modi-
fied Bloch contribution with Ak+lκ being the usual Berry
connection. For the Floquet-Bloch system generated by
a single Bloch band well-separated from all other bands,
this Bloch contribution is numerically small and negli-
gible. Then Amn(k) has only the Floquet contribution
that comes solely from the time variations, which allows
us to consider only the kernel H(k) in Eq.(6).

We again use the oscillating Dirac comb but now with
a small gap as an example to show some numerical re-
sults. Fig.3(a) shows the band structure of such system,
which resembles a so-called Landau-Zener grid [21, 29].
We then numerically solve Eq.(12) near the gap at point
B in Fig.3(a), with the electron initially sitting on band
ε1 (C1 = 1, C2 = 0). The squared moduli |C1|2 and |C2|2
as functions of k under different external field strengths
are plotted in Fig.3(b) using dashed and solid curves, re-
spectively. We can see that when |eE| = 10−3eV/Å (blue
curves), the evolutions of |C1,2|2 are close to step func-
tions indicating total tunneling through the gap, while
for larger |eE|, the electron is in a superposition of two
bands, violating the adiabaticity. Such violation comes
from a larger direct gap near the gap at point B, which
mixes two bands too early. This tells us that when |eE|
is small enough, we can just ignore the influences of that
larger gap and only consider the behavior of electron at
the vicinity of point B, allowing us to have an analytic
discussion.

The system near the point B can be asymptotically

approximated by a 2-level system as

h(k) =

[
E2(k) ∆0/2
∆0/2 E1(k)

]
, (14)

where ∆0 is the gap at k = kB , and E1,2(k) = µ1,2(k−kB)
are the asymptotes of bands ε1 and ε2 near the gap. Thus,
we end up with Zener’s original tunneling model with a
transition rate [28]:

Γ = exp

(
− π∆2

0

2eE|µ1 − µ2|

)
. (15)

In Fig.3(c), we compare the numerical results with the
Eq.(15), which are in good agreement with each other
when |eE| ≤ 1.5 × 10−3eV/Å. However, as |eE| get-
ting bigger, the discrepancies occur due to the non-
adiabaticity of the states before reaching the gap at point
B.

As discussed in last section, for band structure in
Fig.3(a) (or Fig.2(d) if ∆0 = 0) to have separate topolo-
gies, we need the adiabatic condition when electrons are
away from the gap (or the band crossing point) and total
tunneling when passing through the gap (or the crossing
point), which requires the tunneling rate to be one at the
point B and zero elsewhere. That can be realized when
|eE| is in the green shaded area in Fig.3(c).
Discussion.— Assuming an ideal condition where the

tunneling rate is nearly one under a proper electric field
E, the electron can then move freely along the red or the
blue dotted paths shown in Fig. 3(a), depending on its
initial positions, which correspond to the Floquet-Bloch
oscillations with periods of ~

eEκ and ~
eE (G − κ), respec-

tively. Such behaviors show a possibility of energy con-
version between the sound and an external electric field.
The energy involved is actually the energy averged over
one Floquet period T : ε̄ ≡ 〈〈H〉〉 [16].
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To see how the energy is converted, we now restrict our
consideration within the Brillouin zone, which is the en-
ergy dispersion from point A to B and to C in Fig.3(a).
We must keep in mind that this system only has one band
and all others are just replicas. Imaging one electron sit-
ting initially on the segment BC and driven adiabatically
from point B to C by |eE|. Then at point C, the elec-
tron will tunnel through the gap to an adjacent state on
the lower band that is equivalent to the state at point B,
since they differ by a reciprocal lattice vector. In other
words, this is tunneling from point C to point B on a
single band associated with absorption of a quantum of
sound mode, which is the essence of the intraband Zener
tunneling. After a full oscillation period, the electron
goes back to its original electronic state (Floquet-Bloch
state with the same or equivalent k) but has a net posi-
tion change:

∆x|kCkB =

∫ tC

tB

ẋdt =

∫ kC

kB

∂ω(k)

∂k

dk

k̇
= −~(ωC − ωB)

eE
(16)

indicating a gain in the electric potential energy of the
electron. That amount of energy must come from the
sound wave since there is no change in the electronic
state [16]. When the electron is initially at AB, the pro-
cess is similar but reversed. We note that a similar pro-
cess can happen in other Floquet system [30].

However, in the above analysis, we simplify our consid-
erations by assuming Γ ∼ 1 and excluding other possible
scattering channels of the electron. We should anticipate
that in a real physical system, the efficiency of the pro-
posed energy conversion could be significantly less than
one. In experiments, one can see if the energy conversion
is happening by detecting non-trivial Floquet-Bloch os-
cillation patterns through measuring the AC part of the
electric current j induced by the electric field.
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