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Quantum mechanics allows for states in macroscopic superpositions, but they ordinarily undergo
rapid decoherence due to interactions with their environment. A system that only interacts grav-
itationally, such as an arrangement of dark matter (DM), may exhibit slow decoherence. In this
letter, we compute the decoherence rate of a quantum object within general relativity, focusing on
superposed metric oscillations; a rare quantum general relativistic result. For axion DM in a super-
position of the field’s phase, we find that DM in the Milky Way is robust against decoherence, while
a spatial superposition is not. This novel phase behavior may impact direct detection experiments.

Introduction.— Matter that interacts infrequently can
maintain its quantum coherence, making it an excel-
lent candidate for rich quantum mechanical behavior.
Such behavior includes macroscopic superpositions of dis-
tinctly observable states, which can give rise to exotic
phenomena such as interference. The potential for this
behavior is encoded in the off-diagonal elements of the
density matrix describing the object’s quantum state.
Typically, the quantumness of ordinary matter is de-
stroyed rapidly due to decoherence, a process by which
interactions with the environment effectively suppress the
off-diagonal elements of the density matrix [1–12]. Pri-
marily gravitationally interacting matter, which we refer
to as dark matter (DM), exists somewhat isolated from
its environment. Thus, if a piece of DM were to form a
macroscopic superposition, it may preserve its quantum
coherence for macroscopically long periods of time. This
can have ramifications for direct detection as we develop
in this work for the first time.

In this letter, we study a localized mass distribution
of Dark Matter in a Superposition of Macroscopic States
(DMSMS) and compute the rate of decoherence induced
by general relativistic scattering of surrounding standard
model (SM) particles. The formalism and results we ob-
tain rely on genuinely relativistic effects in the weak-field
metric approximation. For an analysis based on Newto-
nian gravity see [13] and for a detailed relativistic com-
panion paper see [14]. What we develop here is a truly
quantum general relativistic result, all treated rigorously
within effective field theory, as the effects arise from the
metric gµν in a quantum superposition. There exist very
few robust quantum general relativistic results; perhaps
the only known examples are Hawking radiation [15] and
corrections to the gravitational force law [16, 17]. Other
work where decoherence and gravity or cosmology play
some role, includes [18–54]. As we explain, our work is
relevant to direct detection searches for the axion.

Basic set up.— Let us consider a DMSMS which is
some distribution of DM, represented pictorially in fig. 1
and described by a state |DM1〉 + |DM2〉. The environ-
ment consists of probe particles, described by a quan-
tum state |ψ〉, and the entire state |Ψ〉 evolves under the
Schrödinger equation. Upon scattering the particle be-
comes entangled with the DM due to the gravitational

FIG. 1. A schematic representation of a probe particle scat-
tered by Dark Matter in a Superposition of Macroscopic
States (DMSMS), evolving into an entangled state |Ψ〉 (see
eq. (1)) where the probe particle’s state is altered by gravita-
tional interaction.

interaction into the state

|Ψ〉 = |ψ1〉|DM1〉+ |ψ2〉|DM2〉 (1)

By tracing out the probe particle, one can study decoher-
ence. For simplicity, we are considering a superposition
of only two states, |DM1〉 and |DM2〉. This basic setup
can be easily extended to a more general superposition,
which we comment on later. To proceed, we need the
Hamiltonian Ĥ governing the gravitational interaction
provided by general relativity. Throughout this work, we
set ~ = c = 1.

Hamiltonian and scattering.— To construct the desired
Hamiltonian, we treat the probe particle as a scalar,
ignoring its spin. Of course, realistic probes, such as
baryons and photons, are not scalars, but since we are
only interested in the leading universal gravitational in-
teraction, we leave the analysis of spin effects for possi-
ble future work. The gravitational interaction is incorpo-
rated in a local way by using the field formalism (with the
probe taken to be a complex scalar field for convenience,
though we will be interested only in particle states and
not anti-particle states).

The action for a complex scalar probe field χ minimally
coupled to the metric gµν (signature +−−−) is given by

S =

∫
d4x
√
−g
(
gµν∂µχ

∗∂νχ−m2
pχ
∗χ
)

(2)

where g is the metric determinant, gµν is the inverse met-
ric, χ∗ is the complex conjugate of χ, and mp is the mass
of the probe. We can define the Hamiltonian density
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from this action in the usual way, giving

Ĥ =
Π∗Π√
−gg00

−
√
−ggij∂iχ∗∂jχ+

√
−gm2

p χ
∗χ+ . . . (3)

where “+ . . .” denotes terms proportional to off-diagonal
metric components.

By acting on single particle states (and ignoring the
suppressed number changing processes), we can recast
the Hamiltonian in the position representation as a dif-
ferential operator H(x, t,−∇2) acting on a single particle
wave function ψ(x, t). For details of this method, see [14].

Specializing to a weakly curved spacetime provided
by the DMSMS, with negligible gravitational wave emis-
sion, we can use a gauge in which the metric is diagonal.
Thus we decompose the metric into a flat background
ηµν = diag(+1,−1,−1,−1) and a small (diagonal) per-
turbation hµν with |hµν | � 1 as gµν = ηµν + hµν . Fur-
ther, for static or spherically symmetric sources, we can
take h00 = 2Φ(x, t) and hij = 2Ψ(x, t)δij , giving the
relatively simple Hamiltonian

H(x, t,−∇2) =
√
−∇2 +m2

p

(
1 + Φ +

Ψ∇2

∇2 −m2
p

)
(4)

where the first term
√
−∇2 +m2

p ≡ H0 is the relativistic

kinetic energy, and thus we refer to the rest of H = H0 +
V as the potential energy V (x, t,−∇2). The Einstein
equations give ∇2Ψ = 4πGNT00, and writing Φ = Ψ + δ,
r(δ′/r)′ = 8πGN (Tθθ/r

2−Trr) for spherically symmetric
sources. The nonrelativistic limit of H gives the familar
form Hnr(x, t,−∇2) = mp − ∇2/2mp + mpΦ where the
leading mp is just the constant mass-energy (mpc

2).
Oscillating scalar source.— When studying time de-

pendent fields as sources, we can consider coherently
oscillating scalar fields as the DMSMS, such as axions
which may make up some or all of the missing DM in the
universe. As a simple example, the scalar field may lo-
cally be characterized by a spherically symmetric spatial
profile φs(r) with a single harmonic oscillation frequency
ω

φ(r, t) =
√

2φs(r) cos(ωt+ ϕ) (5)

For nonrelativistic axion DM, this single harmonic is a
realistic approximation with a frequency close to the ax-
ion’s mass ma. This assumption is also appropriate for
condensates of scalars since they have almost perfectly
periodic oscillations. From the Einstein field equations,
one can show that the potential based on the choice of
eq. 5 takes the form

V (r, t) = V (0)(r) + V (2)(r) cos(2(ωt+ ϕ)) (6)

Note that if the axion is nonrelativistic and if the
spatial profile of the axion is slowly varying, the (time-
averaged) pressure of the source is negligible and Φ ≈ Ψ.
In addition, since the frequency ω ≈ ma, the metric is
almost constant in time. For relativistic configurations,
the metric can have important time dependence.

Scattering in general.—The solution of the Schrödinger
equation i∂ψ/∂t = Hψ for the probe particle in a weak
gravitational interaction can be studied perturbatively
by decomposing into an unscattered part ψu and a scat-
tered part ψs. The unscattered wave function solves the
free Hamiltonian Schrödinger equation (i∂t−H0)ψu = 0,
while the scattered part, to first-order in perturbation
theory, is a solution to the equation

(i∂t −H0)ψs(x, t) = V (x, t,−∇2)ψu(x, t) (7)

Demanding that the scattered piece ψs vanishes in
the past, the relevant solution is readily obtained in
terms of the retarded Green’s function G4 as ψs(x, t) =∫
d4x′G4 V (x′, t′,−∇′2)ψu(x′, t′).
Wave packets.—We take the incoming wave function

to be a wave packet, which is a sum of plane wave modes
ψ(q)(x, t) = e−iEqteiq·x with amplitudes given by the dis-

tribution ψ̃k(q) peaked at a central value k. The spatial
wave function at early times is

ψu(x) =

∫
d3q

(2π)3
1√
2Eq

ψ̃k(q)eiq·xe−iq·b (8)

where b is an impact parameter vector which shifts
the center of the wave packet away from the origin
of the coordinate system. The factor of 1/

√
2Eq is

convenient to make the normalization condition simple∫
d3q |ψ̃k(q)|2/(2π)3 = 1.
Scattering from a static source.—When the potential

V is independent of time, and the source of scattering
is sufficiently local, one can use the asymptotic form of
the retarded Greens function to solve eq. 7 and write the
scattered response of the qth mode as

ψ(q)
s (x, t) = e−iEqtf(q′,q)

eiq|x|

|x|
(9)

where the scattering amplitude is found to be

f(q′,q) ≡ − 1

2π

∫
d3x′ei(q−q

′)·x′
[
Φ(x′)E2

q+Ψ(x′)q2
]

(10)

Then, the full scattered wave packet is given by

ψs(x, t) =

∫
d3q

(2π)3
e−iEqtf(q′,q)

eiq|x|

|x|
ψ̃k(q)√

2Eq
e−iq·b (11)

Scattering from a time-dependent source.— We restrict
this analysis to coherently oscillating sources with time
dependence as in eq. 6. The oscillations of the source
can be incorporated into the time dependence of the qth

mode, allowing a solution similar to eq. 9 in terms of the
appropriately shifted energy variables E±1 ≡ Eq ± 2ω

ψs(x, t)=
∑

α=0,−1,+1

∫
d3q

(2π)3
e−i(Eαt+2αϕ)Fα(q′α,q)

×e
iqαr

r

ψ̃k(q)√
2Eq

e−iq·b (12)
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with a set of scattering amplitudes Fα given by

F0(q′,q)≡−
∫
d3x′

Eq
2π
ei(q−q

′)·x′V (0)(r′, q2) (13)

F±1(q′±1,q)≡−
∫
d3x′

E±1
4π

ei(q−q
′
±1)·x

′
V (2)(r′, q2) (14)

and shifted momenta q±1 ≡ (E2
±1 −m2

p)
1/2.

Decoherence.—Interactions ensure that any macro-
scopic quantum superposition and its environment be-
come inevitably entangled. Thus, the environment will
evolve into a corresponding superposition. Since the de-
grees of freedom of the composite system become numer-
ous as the interactions continue, an observer cannot track
the full detail of the system. Taking on a coarse-grained
point of view, the observer will ignore the environment’s
degrees of freedom and trace them out of the density ma-
trix. This effectively spoils the quantum coherence of the
remaining sub-system.

We now apply the scattering formalism to a probe
particle which interacts with a DMSMS that begins in
a superposition of otherwise classical states |DM1〉 and
|DM2〉. This generates a potential for the probe which
is in a superposition of potentials V1 and V2, and the
probe evolves into a superposition of |ψ1〉 and |ψ2〉. This
evolution is presented pictorially in fig. 1.

Decoherence rate.—The decoherence rate depends on
the inner product of the sub-states |ψ1〉 and |ψ2〉
which we can parameterize by its deviation from unity
| 〈ψ1|ψ2〉 | ≡ 1−∆. The inner product consistent with the
relativistic normalization conditions is given by 〈ψ|φ〉 ≡∫
d3x (−iφ(x, t)∂tψ

∗(x, t) + iψ∗(x, t)∂tφ(x, t)). To low-
est order in scattering, the leading contributions to ∆
come from the first-order scattered wave function defined
previously. One can show that, at this order, ∆ is ap-
proximately [13]

∆ =
1

2
(〈ψs,1|ψs,1〉+ 〈ψs,2|ψs,2〉 − 2<[〈ψs,1|ψs,2〉]) (15)

Then, the decoherence rate is found by summing the ∆’s
from the many probe particles

Γdec = n v

∫
d2b∆b (16)

where n is the number density of probe particles, v is
their typical speed, and ∆b is ∆ evaluated at impact
parameter b. Thus, the following integral over impact
parameter is crucial

Sij ≡
∫
d2b 〈ψs,i|ψs,j〉 (17)

which is used to give the decoherence rate as

Γdec =
1

2
nv(S11 + S22 − 2<[S12]) (18)

For a more general DM superposition
∑
i ai |DMi〉, the

overlaps 〈ψi|ψj〉 still control the decoherence rate. If

these overlaps are of a similar order, the inferred rate
will be similar to that of a two-component superposition.
Thus, we believe this simplification to be justified.

Decoherence from a static source.—We can obtain an
expression for the decoherence rate by first inserting
eq. 11 into eq. 17, where ψi and ψj are written in terms
of momenta q and q̃, respectively. We include the ad-
dition shifts b → b − Li to indicate that the centers
of the sources Vi may differ. The integral can be readily
simplified when the distributions ψ̃k are narrowly peaked
around k (for details see [14]). Averaging over the direc-

tion of k replaces the ψ̃k with a function Pk(q) which
depends only on the magnitudes k and q, giving simply

Sij =

∫
d3q

(2π)3
σ̃ij(q)Pk(q) (19)

where we have defined the generalized scattering cross
section σ̃ij to be

σ̃ij(q) ≡
∫
d2Ω f∗i (q′,q)fj(q

′,q) j0(2qLij sin(θ/2)) (20)

where j0(z) ≡ sin(z)/z is the sinc-function and Lij ≡
|Li−Lj |. Note that σ1 ≡ σ̃11 and σ2 ≡ σ̃22 are the usual
scattering cross sections (with the appropriate general
relativistic amplitudes of eq. (10)) since j0(0) = 1.

If the ψ̃k are narrow enough, we may approximate q ≈
k and take Sij ≈ σ̃ij , obtaining the result

Γdec =
1

2
n v(σ1 + σ2 − 2<[σ̃12])|q=k (21)

Note that in the special case when σ̃12 = 0 and σ ≡ σ1 =
σ2, we recover the familiar form Γdec = n v σ relating to
other results in the literature on decoherence. However,
our result in eq. (21) generalizes this to include the non-
trivial cross term σ̃12 and full relativistic corrections.

Decoherence from a time-varying source.—An analo-
gous procedure may be applied to compute first Sij and
then the decoherence rate for time-varying sources. Each
Sij involves a nine-term sum over the α’s of each sate ψi
and ψj ; for a detailed analysis, see [14]. In particular,

considering narrow ψ̃k will be of interest once more, al-
lowing us to simplify the decoherence rate in terms of
another generalized cross section σ̄, defined in eq. 23.

Phase difference.—We examine now the case where the
distinction between the Vi is only in the phase of oscil-
lation ϕi. Thus we set L1 = L2 = 0, and the overlap
integral Sij can be greatly simplified

Sij =
∑
α,β

σ̄αβ e
2i(αϕi−βϕj) (22)

where the sum runs over α, β = −1, 0,+1, we have made
the approximation that the distributions ψ̃k are narrowly
peaked to integrate over momentum, and we have defined
the new generalized cross sections as

σ̄αβ(k) ≡
∫
d2ΩF ∗α(k′α,k)Fβ(k′α,kα−β) (23)
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Using the fact that <[σ̄αβ ] = <[σ̄βα] (see [14]), we can
see that the terms σ̄0,0, σ̄0,β , and σ̄α,0 drop out of the
expression for the decoherence rate in eq. 18, giving

Γdec =
1

2
nv
(
Sϕ(σ̄+1,+1 + σ̄−1,−1)−Aϕ<[σ̄−1,+1]

)
(24)

where Sϕ = 2(1− cos(2(ϕ1−ϕ2))) and Aϕ = cos(4ϕ1) +
cos(4ϕ2)−2 cos(2(ϕ1+ϕ2)) encode the phase dependence.
This is an interesting new quantum gravitational result.

Quantitative results.— For situations where the super-
position states differ in their spatial profiles, the nonrel-
ativistic limit of our formalism usually suffices, compat-
ible with [13]. If we consider a DMSMS which is just a
random Gaussian overdensity surrounded by an under-
density in the background density of DM in the galaxy
(with vanishing monopole), we can set the size of the
DMSMS by the de Broglie wavelength of typical DM in
the Milky Way and obtain the following decoherence rate
Γdec = CG2

Nmpρ
2
DMρp/(m

8
av

8
avp), where ρDM and ρp are

the densities of the DM and the probe, va and vp are
the typical speeds of the DM and probe particles, and
C is a constant numerical factor (for details, see [13]).
Estimating this rate using the local density of DM in
the Milky Way ρloc,mw ≈ 0.4 GeV/cm3 [55], taking the
probe to be a proton with density ρp ∼ 0.2 ρloc,mw, and
estimating the speed of axions and protons as the virial
speed in the Milky Way vp ≈ va ≈ 220 km/s, we find
that Γdec ≈ 10−20 sec−1(10−6 eV/ma)8. This means that
light axions decohere rapidly. We can also examine de-
coherence of such a DMSMS if it passes through the
earth’s atmosphere; using the density of probes to be
ρp ∼ 1 kg/m

3
, we find Γdec ≈ 103 sec−1(10−6eV/ma)8,

which can be significant.
For the remainder of this work, we will focus on the

above truly relativistic phenomenon when the superpo-
sition states only differ by the phase of the axion. In
this case, there is no divergence in the forward direction
in the scattering amplitudes since the only cross sections
left in eq. 24 do not diverge even for a monopole (due
to the fact that the transfer momentum after scattering
cannot vanish when α, β 6= 0).

We will choose the spatial profile of the DMSMS to be
a Gaussian. A Gaussian perturbation in the DM den-
sity corresponds to a Gaussian momentum distribution,
fitting the expectation that virialized DM in the galaxy
would obey a Maxwell velocity distribution. We take

the spatial profile to be φs(r) ∼
√
κMµ3/m2

a e
−r2µ2/2,

where M is the mass-scale associated with the DMSMS,
µ is the inverse length scale (roughly denoting its size),
and κ is an O(1) numerical factor. The scattering am-
plitudes in eq. 14 are proportional to Fourier transforms
of the potential with respect to the transfer momentum
ptr ≡ q − qα. Therefore, the cross sections and the
decoherence rate will be proportional to the Gaussian

e−p
2
tr/4µ

2

. The transfer momentum is a minimum in the
forward direction, and for ω � Eq (which is expected for
realistic probes and an axion DMSMS), the argument of
the exponential is p2

tr/(4µ
2) ≈ α2ω2E2

q/(µ
2q2) (see [14]).

For the relevant terms α 6= 0, this cannot vanish; thus

Γdec ∝ exp

[
− ω2E2

k

µ2k2pc
4

]
(25)

(reinstating c). So if the transfer momentum is apprecia-
ble, the decoherence rate is exponentially suppressed.

Slowly moving dark matter.—For slow axion DM, one
expects ω ≈ ma c

2. We can then set the scale µ by the
de Broglie wavelength of the axion such that µ ∼ pa =
mava. Taking the probe to be a proton in the galaxy, we
set the speeds of both particles to be the virial speed in
our galaxy ∼ 10−3c, obtaining

ω2E2
k

µ2k2pc
4
≈
ω2(m2

p + k2p/c
2)

m2
av

2
ak

2
p

≈ c4

v2av
2
p

∼ 1012 (26)

Similarly, if the probe is relativistic, such as a photon,
we find ω2E2

k/(µ
2k2pc

4) ≈ c2/v2a ∼ 106. Thus, for nonrel-
ativistic objects in the galaxy, the decoherence rate will
be exponentially suppressed and a superposition of the
phase of the axion is robust against decoherence.

Relativistic dark matter.—If instead we consider a com-
ponent of the DM that is relativistic, such as near a black
hole or for dense boson stars (see below), we can have sit-
uations where ω ∼ µ c and thus the exponential may not
necessarily suppress the decoherence rate.

First, let us examine the dependence of the decoher-
ence rate on the physical scales (see [14] for detailed anal-
ysis)

Γdec ≈ K
G2
NE ρp ρ

2
DM

m8
a

[phase; (semi)-relativistic] (27)

(here c = 1), where E is the energy of the probe and
K is a numerical factor depending on the ratios kp/mp,
ω/ma, and µ/ma (each is O(1) or greater for DM and
probes which are relativistic).

To obtain an idea of the decoherence rate, we shall use
the local average density in the Milky Way ρloc,mw for the
density of the DMSMS. If the probes are semi-relativistic
protons in the galaxy, we can take their energy to be
∼ 2 GeV. Such protons may come from cosmic rays, so
we may use estimates of cosmic ray proton density from
the literature [56], roughly ρcr ∼ 10−9 GeV/cm3. Finally,
taking a representative K to be 10−4 for semi-relativistic
DM and protons, we find a reference decoherence rate
near the Hubble rate today (H0 ≈ 2.2 × 10−18 s−1) to
be Γdec ∼ 10−21 sec−1(K/10−4)(10−12 eV/ma)8. Simi-
larly, we can consider photons from the cosmic-microwave
background (CMB) as probes of the DMSMS, which have
number densities of approximately n ∼ 400/cm3 and
typical energies of ∼ 6 × 10−4 eV. Taking a represen-
tative value of K for the semi-relativistic DM with a
photon probe to be 10−2, we find the decoherence rate
Γdec ∼ 10−16 sec−1(K/10−2)(10−14 eV/ma)8.

Boson stars.—Axions are predicted to form gravita-
tionally bound Bose-Einstein condensates known as bo-
son stars. Previous work has established the dynamics
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of boson stars [57–72], and specifically the unique phase-
dependence of the outcomes of boson star mergers [73].
Considering a typical dilute boson star made of nonrel-
ativisitc axions, if it is in a superposition of phases, we
can predict that the coherence of the superposition will
be long-lived. Further, if such a boson star engages in a
merger event, the phase dependence would lead to non-
trivial evolution of the merged object.

In contrast, the densest boson stars [74] are
made of (semi)-relativistic axions, and therefore
they may exhibit appreciable decoherence of their
phases. We find the decoherence rate to be Γdec ∼
106 sec−1(K/10−4)(1 eV/ma)4, which is quite rapid.

Black holes.— We also remark that rapid decoherence
for DM would occur near the horizon of a black hole as
the DM becomes highly relativistic. It is interesting to
note that from this point of view, the most classical states
are entering the black hole; this may have ramifications
for the information paradox.

Consequences for earth based experiments.—Earth-
based experiments, for example haloscopes [75] including
ADMX [76], search directly for axion DM that passes
through the atmosphere or the earth. We previously
showed that the decoherence rate is increased by frequent
interactions when the DM passes through the atmosphere
[13]. However, the phase of the axion cannot be deco-
hered in this way for a nonrelativistic DMSMS. Since the
DM near the earth should be nonrelativistic, our results
show that a superposition of phases will survive.

This suggests that earth-based experiments should

consider a quantum superposition of axion waves of dif-
ferent phases interacting with the detector |axion〉 ∼∑
i ci| cos(ωt − ka · x + ϕi)〉. Experiments like ADMX

involve a resonant cavity, and the phase of the resonant
electromagnetic waves will be impacted by the phase of
the axion. This raises questions about what impact this
may have for the signal in the resonant cavity. The cav-
ity would evolve into a superposition of different reso-
nant electromagnetic signals, though it may be difficult to
predict the experimental signature of this phenomenon,
since the subsequent decoherence from other interactions
will likely be very rapid. This fundamentally new phe-
nomenon found here can alter the response of detectors
and deserves consideration in detection strategies.

We assumed in this work that a DM superposition
may naturally exist. One may also attempt to determine
whether some DM is in a superposition by probing it with
a particle which is entangled with a reference system; the
probe particle, upon remeasurement, may divulge infor-
mation about the state of the DM. An individual particle
generally only gains a small amount of entanglement with
DM, and it is the net effect of a large number of particles
that can lead to decoherence. Nevertheless, this may be
an interesting way to learn about the character of the
DM state.
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