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We generalize Page’s result on the entanglement entropy of random pure states to the many-
body eigenstates of realistic disordered many-body systems subject to long range interactions. This
extension leads to two principal conclusions: first, for increasing disorder the “shells” of constant
energy supporting a system’s eigenstates fill only a fraction of its full Fock space and are subject
to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in
all regimes preceding the many-body localization transition individual eigenstates are thermally
distributed over these shells. These results, corroborated by comparison to exact diagonalization
for an SYK model, are at variance with the concept of “non-ergodic extended states” in many-body
systems discussed in the recent literature.
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Introduction:— Complex quantum systems exposed to
external disorder may enter a phase of strong localization.
About two decades after the prediction of many-body lo-
calization (MBL) [1–3], there is still no strong consensus
about the stability of the MBL phase and/or the possible
presence of an intermediate phase between MBL and the
thermal phase. One class of models where these questions
can be explored with more analytic control is confined
many-body systems with long-range interactions. Un-
der these conditions, the interaction operator couples all
single-particle states, which facilitates the analysis. At
the same time, the Hilbert space dimension is still expo-
nentially large in the particle number, which leads to rich
physics relevant to systems such as chaotic many body
quantum devices [4–8], small sized optical lattices [9–11],
or qubit arrays [12, 13].

In recent years, the complex structure of many-body
quantum states in MBL has become a focus of inten-
sive research. Unlike with single particle problems, where
extended wave functions uniformly cover real space, in-
creasing the disorder in a phase of extended many body
states |ψ〉 leads to a diminished wave function support
in Fock space. This phenomenon, which shows, e.g., in a
suppression of wave function moments (WFM) |〈n|ψ〉|2q
in an occupation number basis, |n〉, has led to the pro-
posal of a phase of “nonergodic extended states” [14–17]
intermediate between the phases of absent and strong
localization. An alternative scenario is that for each re-
alization of the disorder only a subset of states {|n〉} have
finite overlap with the eigenstates of energy E, and in this
way define a quantum energy shell in Fock space. A uni-
form (thermal) distribution of the exact eigenstates on
this shell would then be the defining criterion for main-
tained quantum ergodicity on the delocalized side of the
MBL transition.

At this stage, there is mounting evidence in favor of

the second scenario [18–21]. However, in order to firmly
characterize the physics of a globally realized many body
ergodic quantum phase, two questions need to be ad-
dressed: how can the energy shell be described in quan-
titative terms? And what is the distribution of quantum
states on that shell? As indicated above, wave function
statistics can provide at least part of an answer to the
first question. In this Letter, we focus on the equally
important second part of the problem and demonstrate
that the key to its solution lies in concepts of quantum
information. Specifically, we will compute pure state en-
tanglement entropies (EE) under a relatively mild set of
assumptions. Within this framework we find that to ze-
roth order wave functions remain thermally distributed
over the shell. This establishes a microcanonical distri-
bution, in agreement with the second scenario — main-
tained ergodicity in all regimes prior to the transition. In
addition, the EE contains sub-leading terms which reflect
the characteristic way in which the energy shell is inter-
laced into Fock space. These contributions sharply dis-
tinguish the energy shells of genuine many body systems
from those of phenomenological high dimensional mod-
els such as the random energy model (REM), or sparse
random states [22]. In this way the combined analysis of
WFMs and EEs becomes a sensitive probe into the com-
plex manifestation of wave function ergodicity in many
particle systems.

Pure state entanglement entropies: — For a pure state,
ρ = |ψ〉〈ψ|, the entanglement entropy relative to a parti-
tioning F = FA⊗FB of Fock space is defined as the von
Neumann entropy, SA = −trA(ρA ln ρA) of the reduced
density matrix ρA = trB(|ψ〉〈ψ|) . The entanglement en-
tropies of pure maximally random states were calculated
in the classic Ref. [23]. More recent work [24] empha-
sizes the utility of the concept in the context of random
matrix models serving as proxies of high-dimensional lo-
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calizing systems [15]. In these systems, quantum inter-
ference shows in a contribution to the entanglement en-
tropy proportional to the ratio of subsystem Fock-space
dimensions. A main finding of the present work is that
energy-shell correlations distinguishing microscopic sys-
tems from random matrix models open a second channel
of quantum information and exponentially enhance the
suppression of the entanglement below its thermal value.
In this way, the entanglement sharply distinguishes be-
tween genuine many-body wave functions and wave func-
tions on generic high-dimensional random lattices.

In the rest of this Letter, we will compute the entangle-
ment entropy of pure states prior to the onset of strong
localization under a minimal set of assumptions. We will
compare our results to the entropies obtained for phe-
nomenological models and to numerical data obtained
for a Majorana SYK model.

Energy shell: — We begin with a qualitative discussion
of the Fock space energy shell. Consider a many-body
Hamiltonian Ĥ = Ĥ2 + Ĥ4, where Ĥ4 is an interaction
operator and Ĥ2 a one-body operator defined by a single
particle spectrum {mi}, i = 1, . . . , N distributed over a
range δ. Working in the eigenbasis of Ĥ2, Fock space
is spanned by the D ≡ 2N occupation number states
n = (n1, . . . , nN ), ni = 0, 1 for spinless fermions. We
interpret these states as sites of a hypercubic lattice, car-
rying local potentials vn =

∑
(2ni − 1)mi with r.m.s.

value ∆2 ≡ N1/2δ. Individual states n are connected to
a polynomially large number Nα of ‘nearest neighbors’ m
by the interaction Ĥ4. For interaction matrix elements
tnm ∼ gN−β/2, the r.m.s. eigenvalue of Ĥ4 scales as
∆4 ∼ gN (α−β)/2, with g an N -independent coupling en-
ergy for the interaction. These interactions change only
an order-one number of occupation numbers, so |vn−vm|
is of order δ and thus for large N much smaller than the
‘bandwidth’ ∆2 of Ĥ2.

In the competition of the operators Ĥ2 and Ĥ4, states n
may hybridize with states m via the coupling tnm. When
the eigenstates of Ĥ are delocalized in Fock space, this
hybridization gives the local spectral density

νn(E) ≡ − 1

π
Im〈n|(E+ − Ĥ)−1|n〉, (1)

a linewidth κ = κ(vn, δ, g) which must be self-consistently
determined [25]. The solution of Eq. (1) for a given re-
alization of the disorder contains the essential informa-
tion on the distribution of the energy shell in Fock space.
Specifically, for generic values of the energy E (we set
E = 0 for concreteness), the strength of the disorder, δ,
defines four regimes of different shell structure:
I: δ � N−1/2∆4: the characteristic disorder band width
δN1/2 = ∆2 � ∆4 is perturbatively small. In this
regime, the spectral density, νn ≡ ν is approximately
constant over energy scales ∼ ∆2.
II: N−1/2∆4 � δ � ∆4: the bandwidth of Ĥ2 exceeds
that of the interaction Ĥ4, but nearest neighbors remain

energetically close |vn − vm| ∼ δ � ∆4. In this regime,
κ = ∆4, indicating that the full interaction Hamiltonian
enters the hybridization of neighboring sites.

III: ∆4 � δ � δc: only a fraction ∼ (∆4/δ)
2 of near-

est neighbors remain in resonance, and the broadening is
reduced to κ ∼ ∆2

4/δ.

IV: The threshold to localization, δc, is reached when less
than one of the ∼ Nα neighbors of characteristic energy
separation δ falls into the broadened energy window. Up
to corrections logarithmic in N (and neglecting potential
modifications due to Fock space loop amplitudes) this
leads to the estimate δc ∼ Nα/2∆4 for the boundary to
the strong localization regime.

The energy shell in the delocalized regimes II and III
is an extended cluster of resonant sites embedded in Fock
space. It owes its structure to the competition between
the large number O(Nα) of nearest neighbor matrix el-
ements and the detuning of statistically correlated near-
est neighbor energies, vn, vm. In regime II, only a poly-

nomially (in N) small fraction κ/∆2
II∼ ∆4/(δN

1/2) of
Fock space sites lie in the resonant window defining the
energy shell, and in III this fraction is further reduced

to
III∼ ∆2

4/(δ
2N1/2), before the shell fragments at the

boundary to regime IV.

We also note that if a site, n, lies on the shell, the prob-
ability that its neighboring sites of energy vm = vn±O(δ)
are likewise on-shell is parametrically enhanced com-
pared to that of generic sites with energy vn±O(∆2). It is
this principle which gives the energy shell of many-body
systems a high degree of internal correlations (absent in
phenomenological lattice models with statistically inde-
pendent on-site randomness) [26]. What physical quan-
tities are sensitive to these correlations? And how do
quantum states spread over the shell structure? As we
are going to discuss next, the pure state entanglement
entropy, SA, contains the answer to these questions.

Entanglement entropy: — Consider a Fock space
(outer product) partitioning defined by n = (l,m) where
the NA-bit vector l labels the states of subsystem A and
m those of B with NB = N −NA � NA. We are inter-
ested in the disorder averaged moments Mr ≡ 〈trA(ρrA)〉,
and the entanglement entropy SA = −∂rMr|r=1 of the
reduced density matrix, ρA = trB(|ψ〉〈ψ|), defined by
a realization-specific zero-energy eigenstate Ĥ|ψ〉 = 0.
The bookkeeping of index configurations entering the mo-
ments trA(ρrA) = ψl1m1 ψ̄l2m1ψl2m2 . . . ψlrmr ψ̄l1mr is con-
veniently done in a tensor network representation as in
Fig. 1. Introducing a multi-index N ≡ (n1, . . . , nr), and
analogously for NA,B , the figure indicates how the index-
data N and M carried by ψ and ψ̄ is constrained by
the summation as Mi

B = N i
B and Mi

A = N τi
A , where

τi = (i + 1)mod(r). A further constraint, indicated by
red lines in the bottom part of the figure, arises from
the random phase cancellation under averaging, which
in the present notation requires N i ≡ Mσi, for some
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FIG. 1: Top left: graphic representation of the tensor am-
plitude ψlmψ̄l′m′ . Top right: contraction of indices defining
tr(ρ5A). Bottom: averaging enforces pairwise equality of in-
dices n, n′ in tensor products 〈. . . ψn . . . ψ̄n′ . . .〉, as indicated
by red lines. Left: identity pairing of indices within the five
factors 〈trA(ρAρAρAρAρA)〉. Right: pairing of indices of the
second and fourth factor.

permutation σ. (The figure illustrates this for the iden-
tity, σ = id., and the transposition σ = (2, 4).) Com-
bining the two constraints, we obtain the representation
Mr =

∑
σ

∑
N
∏
i〈|ψni |2〉δNA,σ◦τNA

δNB ,σNB
. This ex-

pression is universal in that it does not require assump-
tions other than the random phase cancellation. In a
less innocent final step we establish contact to the pre-
viously discussed local density of states, νn, and com-
pare the two representations Dν ≡

∑
α δ(E − Eα) =∑

n,α |ψα,n|2δ(E − Eα) =
∑
n νn to identify |ψn|2 = νn

Dν .

In other words, we identify the moduli |ψn|2 of a fixed
eigenstate ψ = ψα with the realization specific local den-
sity of states, νn, at E = Eα. For the legitimacy of
this replacement for single particle random systems see
Ref. [30], and for the SYK model the Supplemental Ma-
terial and Ref. [31]. With this substitution, we obtain
the representation

Mr =
∑
σ

∑
N

r∏
i=1

λni
δNA,(σ◦τ)NA

δNB ,σNB
, (2)

with λn ≡ νn
Dν . This expression describes two comple-

mentary perspectives of quantum states in Fock space:
their support on a random energy shell defined by the
coefficients λn ∼ νn, and random phase cancellations im-
plicit in the combinatorial structure. In the following,
we discuss the manifestations of these principles in the
above regimes I-IV.

Regime I, maximally random states: — Here, wave
functions are uniformly distributed, νn = ν, and the
evaluation of Eq. (2) reduces to a combinatorial prob-
lem. The latter has has been addressed in the string the-
ory literature [32, 33] (where high-dimensional pure ran-
dom states are considered as proxies for black hole micro
states.) Inspection of the formula shows that increasing
permutation complexity needs to be paid for in summa-
tion factors DB . Keeping only the leading term, σ = id.,
and the next leading single transpositions σ = (ij), we

obtain Mr ≈ D1−r
A +

(
r
2

)
D2−r
A D−1B , and the subsequent

differentiation in r yields Page’s result [23]

SA − Sth = − DA

2DB
, Sth = lnDA. (3)

Interestingly, higher order terms in the DA/DB-
expansion vanish in the replica limit [23, 32–35], and
Eq. 3 is exact for arbitrary NA ≤ NB , up to correc-
tions small in 1/D. (The case NA ≥ NB follows from
exchange A ↔ B.) The result states that to leading or-
der the entropy of the subsystem is that of a maximally
random (‘thermal’) state, Sth. The residual term results
from wave function interference across system bound-
aries. Reflecting a common signature of ‘interference con-
tributions’ to physical observables, it is suppressed by a
factor proportional to the Hilbert space dimension.

Regime II & III, energy shell entanglement: — The en-
ergy shell now is structured and correlations in the local
densities, {νn}, lead to a much stronger correction to the
thermal entropy. Since these contributions come from
the identity permutation (do not involve wave function
interference), we ignore for the moment σ 6= id., reducing
Eq. (2) to Mr '

∑
l λ
r
A,l with λA ≡ trB(λ). This expres-

sion suggests an interpretation of the unit normalized
density {λn} as a spectral measure,

∑
n λn = 1, λn ≥ 0,

and of λA as the reduced density of system A. With this
identification, the entropy,

SA ≈ Sρ ≡ trA(λA ln(λA)) (4)

becomes the information entropy of that measure.
This is as far as the model-independent analysis goes.

Further progress is contingent on two assumptions, which
we believe should be satisfied for a wide class of systems
in their regimes II and III: First, the exponentially large
number of sites entering the computation of the spectral
measure justifies a self averaging assumption,∑

nX

F (vnX
) ≈ DX〈F (vX)〉X ≡

≡ DX√
2π∆X

∫
dvX exp

(
− v2X

2∆2
X

)
F (vX), (5)

where X = A,B,AB stands for the two subsystems,
or the full space, respectively, DX are the respective
Hilbert space dimensions, and ∆X = δ

√
NX . In other

words, we replace the sum over site energies by an av-
erage over a single variable whose Gaussian distribution
follows from the central limit theorem. Second, when
integrated against the distribution of subsystem energies
vB , the local DoS at zero energy E ' 0 acts as a smeared
δ-function, setting the additive energy v = vA + vB ' 0,
and effectively smoothening the distribution λA,l. Since
κ � ∆2 ∼ ∆B , the detailed value of the width of the
shell, κ, is of no significance in this construction.

Under these assumptions, straightforward computa-
tions detailed in the supplementary material yields, e.g.,
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the density of states as Dν =
∑
AB νn ≈ D〈δκ(v)〉AB =

D√
2πNδ

. Applied to the computation of the moments

Eq. (2), the averaging procedure obtains the entangle-
ment entropy as [36]

SA − Sth = −1

2
ln

(
N

NB

)
+

1

2

NA
N
−
√

N

2NA

DA

2DB
. (6)

A number of comments on Eq. (6): Provided the above
assumptions on the spectral measure hold, the result has
the same level of rigor as Page’s formula Eq. (3). The
main difference is that (for small subsystems, NA � N)

the information entropy SA − Sth ≈ − 1
4

(
NA

N

)2
is expo-

nentially enhanced compared to the correction in Eq. (3).
Also note that there is no dependence on the disorder
strength (see supplemental material for more details).

Comparison to phenomenological models: — The en-
tanglement entropy (6) is a universal signature of corre-
lations (but not the volume) of the energy shell. Con-
versely, the WFMs, |ψn|2q, describe the shrinking of the
shell volume (but not its correlations). To see that these
are independent pieces of information, it is instructive to
compare to the random energy model (REM) [42], a phe-
nomenological model replacing the one-body randomness
by a set of statistically independent Fock state potentials
{vn}. For increasing δ, the WFMs diminish as in micro-
scopic models [43]. However, we have verified that the
EE of REM states coincides with Page’s Eq. (3). The
same result is obtained for sparse random states [22],
as even more phenomenological proxies of many body
states. What is the origin of the difference to Eq. (6)? A
genuine many-body model describes many “bodies”, rep-
resenting the microscopic degrees of freedom. The Fock
space is an outer product over the single body spaces, and
the Hamiltonian contains only operators coupling O(1)
of these degrees of freedom. In this sense the REM is not
a many-body model, since its nonlocal energy operator
acts on the products of all (or most) degrees of freedom
simultaneously. Specifically, it lacks the principle of en-
ergy subsystem additivity E = EA + EB , required by
Eq. (6). In this way, the entanglement entropy becomes
a sensitive indicator of whether quantum states are gen-
uine many body states or of different origin.

Regime boundaries: — Upon approaching the bound-
ary to the trivially ergodic regime I, the second condition
gets compromised, i.e. the width κ of individual states
ceases to be small compared to the statistical fluctuations
∼ ∆B . Leaving a detailed analysis of the crossover re-
gion to future work, our numerics below shows a collapse
of Eq.(6) to Eq. (3) upon crossing the regime boundary.
In the opposite MBL regime IV, eigenstates are concen-
trated on a small number O(1) of isolated Fock states,
and the concept of an energy shell becomes meaningless:
to exponential accuracy in N , remote Fock states, even
if they are close in energy, have no common matrix ele-
ments with individual eigenstates.

1 2 3 4 5 6
NA

10 4

10 3

10 2

10 1

(S
A

S t
h)

= 1.0
= 0.01

NA

(S
A

S t
h)

FIG. 2: Numerical entanglement entropies (symbols) vs.
analytical (lines) for a system of size N = 15 in regime I,
δ = 0.01 (solid) and III, δ = 1 (dashed). Inset: linear scale
representation of the same data.

The entanglement entropy then scales as SA ∼
s(δ/δc)NA/N , where s is related to the entropy of the dis-
tribution of the localized eigenstate in Fock space. For
1 � NA � N , SA � 1 stays small down to δ ∼ δc,
where it jumps to SA ∼ NA at the localization transition
to regime III.

Numerical analysis: — Fig. (2) shows a comparison of
the analytical predictions of Eqs. (3) and (6) with numer-
ical results obtained for the SYK Hamiltonian [36]. In

that case, Ĥ4 = 1
4!

∑2N
i,j,k,l=1 Jijklχ̂iχ̂jχ̂kχ̂l, where {χ̂l}

are Majorana operators [44, 45]. The competing one-

body operator reads Ĥ2 =
∑N
i=1mi(2c

†
i ci − 1), where

ci = 1
2 (χ̂2i−1 + iχ̂2i) are complex fermion operators de-

fined by the Majoranas [46, 47]. Referring to the supple-
mental material for details, the agreement is very good,
and it becomes better with increasing NA. (We have
no certain explanation for the deviations at the smallest
values of NA.)

Discussion: — In this paper, we applied a combined
analysis of the statistics and the entanglement proper-
ties of pure quantum states to explore the delocalized
phase of disordered many body systems subject to long
range correlations. Our analysis supports the view that
the appealing concept of “non-ergodic extended states”
— adopted including in publications of the present au-
thors [31, 43] — should be abandoned in favor of a qual-
ified interpretation of many body quantum ergodicity.
Its key element is the support set {n} of states of a given
energy, the quantum analog of an energy shell. We have
shown how the entanglement properties of pure quan-
tum states reveal ergodicity, and in addition character-
istic correlations distinguishing the energy shells of gen-
uine many body systems from those of phenomenological
proxies.

What is the scope of the above findings? Referring to
the supplemental material for a more detailed discussion,
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the freedom to adjust the exponents α, β entering the def-
inition of the model Hamiltonian, implies that our result
applies to a wide class of effectively long range interact-
ing systems, among them realizations whose interaction
operators are short range in a microscopic (“real space”)
basis but long range in the eigenbasis of Ĥ2. It is tempt-
ing to speculate on generalizations to yet wider system
classes. To this end, we note that the derivation of Eq. (6)
relies on a number of necessary conditions: subsystem
additivity E ' EA + EB (requiring that the coupling
energy between the subsystems is negligibly small in the
limit of large system sizes), statistically independent dis-
tribution of the the energies EA,B , and dependence of
the spectral density (measure) on no more than the sin-
gle conserved quantity, energy. Whether these criteria
are not only required but actually sufficient to stabilize
the result is an interesting question left for forthcoming
research [48]. However, regardless of the scope of Eq. (6),
we reason that the combination of wave function statis-
tics and pure state entanglement defines the suitable di-
agnostic to characterize the ergodic phase of many body
quantum chaotic systems.
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