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We consider the problem of jointly estimating expectation values of many Pauli observables, a
crucial subroutine in variational quantum algorithms. Starting with randomized measurements,
we propose an efficient derandomization procedure that iteratively replaces random single-qubit
measurements by fixed Pauli measurements; the resulting deterministic measurement procedure is
guaranteed to perform at least as well as the randomized one. In particular, for estimating any
L low-weight Pauli observables, a deterministic measurement on only of order log(L) copies of a
quantum state suffices. In some cases, for example when some of the Pauli observables have high
weight, the derandomized procedure is substantially better than the randomized one. Specifically,
numerical experiments highlight the advantages of our derandomized protocol over various previous
methods for estimating the ground-state energies of small molecules.

I. INTRODUCTION

Noisy Intermediate-Scale Quantum (NISQ) devices
are becoming available [41]. Though less powerful
than fully error-corrected quantum computers, NISQ
devices used as coprocessors might have advantages
over classical computers for solving some problems
of practical interest. For example, variational algo-
rithms using NISQ hardware have potential applica-
tions to chemistry, materials science, and optimiza-
tion [3, 7, 19–21, 28, 38, 40, 42].

In a typical NISQ variational algorithm, we need to
estimate expectation values for a specified set of oper-
ators {O1, O2, . . . , OL} in a quantum state ρ that can
be prepared repeatedly using a programmable quan-
tum system. To obtain precise estimates, each opera-
tor must be measured many times, and finding a rea-
sonably efficient procedure for extracting the desired
information is not easy in general. In this paper, we
consider the special case where each Oj is a Pauli op-
erator; this case is of particular interest for near-term
applications.

Suppose we have quantum hardware that produces
multiple copies of the n-qubit state ρ. Furthermore,
for every copy, we can measure all the qubits inde-
pendently, choosing at our discretion to measure each
qubit in the X, Y , or Z basis. We are given a list of
L n-qubit Pauli operators (each one a tensor product
of n Pauli matrices), and our task is to estimate the
expectation values of all L operators in the state ρ,
with an additive error no larger than ε for each oper-
ator. We would like to perform this task using as few
copies of ρ as possible.

If all L Pauli operators have relatively low weight
(act nontrivially on only a few qubits), there is a sim-
ple randomized protocol that achieves our goal quite
efficiently: For each of M copies of ρ, and for each of
the n qubits, we chose uniformly at random to mea-
sure X, Y , or Z. Then we can achieve the desired
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prediction accuracy with high success probability if
M = O(3w logL/ε2), assuming that all L operators
on our list have weight no larger than w [16, 22]. If
the list contains high-weight operators, however, this
randomized method is not likely to succeed unless M
is very large.

In this paper, we describe a deterministic protocol
for estimating Pauli-operator expectation values that
always performs at least as well as the randomized
protocol, and performs much better in some cases.
This deterministic protocol is constructed by deran-
domizing the randomized protocol. The key obser-
vation is that we can compute a lower bound on
the probability that randomized measurements on M
copies successfully achieve the desired error ε for ev-
ery one of our L target Pauli operators. Furthermore,
we can compute this lower bound even when the mea-
surement protocol is partially deterministic and par-
tially randomized; that is, when some of the measured
single-qubit Pauli operators are fixed, and others are
still sampled uniformly from {X,Y, Z}.

Hence, starting with the fully randomized protocol,
we can proceed step-by-step to replace each random-
ized single-qubit measurement by a deterministic one,
taking care in each step to ensure that the new par-
tially randomized protocol, with one additional fixed
measurement, has success probability at least as high
as the preceding protocol. When all measurements
have been fixed, we have a fully deterministic pro-
tocol. In numerical experiments, we find that this
deterministic protocol substantially outperforms ran-
domized protocols [14, 17, 22, 36, 39]. The improve-
ment is especially significant when the list of tar-
get observables includes operators with relatively high
weight. Further performance gains are possible by ex-
ecuting (at least) linear-depth circuits before measure-
ments [12, 25, 26, 49]. Such procedures do, however,
require deep quantum circuits. In contrast, our pro-
tocol only requires single-qubit Pauli measurements
which are more amenable to execution on near-term
devices.

We provide some statistical background in Sec. II,
explain the randomized measurement protocol in
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Sec. III, and analyze the derandomization procedure
in Sec. IV. Numerical results in Sec. V show that our
derandomized protocol improves on previous meth-
ods. Sec. VI contains concluding remarks. Further
examples and details of proofs are in the appendices.

II. STATISTICAL BACKGROUND

Let ρ be a fixed, but unknown, quantum state on n
qubits. We want to accurately predict L expectation
values

ω`(ρ) = tr(Oo`
ρ) for 1 ≤ ` ≤ L, (1)

where each Oo`
= σo`[1] ⊗ · · · ⊗ σo`[n] is a ten-

sor product of single-qubit Pauli matrices, i.e. o` =
[o`[1], . . . ,o`[n]] with o`[k] ∈ {I,X, Y, Z}. To ex-
tract meaningful information, we perform M (single-
shot) Pauli measurements on independent copies of
ρ. There are 3n possible measurement choices. Each
of them is characterized by a full-weight Pauli string
pm ∈ {X,Y, Z}n and produces a random string of n
outcome signs qm ∈ {±1}n.

Not every Pauli measurement pm (1 ≤ m ≤ M)
provides actionable advice about every target observ-
able o` (1 ≤ ` ≤ L). The two must be compat-
ible in the sense that the latter corresponds to a
marginal of the former, i.e. it is possible to obtain o`

from pm by replacing some local non-identity Paulis
with I. If this is the case, we write o` B pm and
say that measurement pm “hits” target observable
o`. For instance, [X, I], [I,X], [X,X] B [X,X], but
[Z, I], [I, Z], [Z,Z] 6B [X,X]. We can approximate
each ω`(ρ) by empirically averaging (appropriately
marginalized) measurement outcomes that belong to
Pauli measurements that hit o`:

ω̂` =
1

h(o`; [p1, . . . ,pM ])

∑
m: o`Bpm

∏
j:o`[j]6=I

qm[j], (2)

where h(o`; [p1, . . . ,pM ]) =
∑M

m=1 1 {o` B pm} ∈
{0, 1, . . . ,M} counts how many Pauli measurements
hit target observable o`.

It is easy to check that each ω̂` exactly reproduces
ω`(ρ) in expectation (provided that h(o`;P) ≥ 1).
Moreover, the probability of a large deviation im-
proves exponentially with the number of hits.

Lemma 1 (Confidence bound). Fix ε ∈ (0, 1) (ac-
curacy) and 1− δ ∈ (0, 1) (confidence). Suppose that
Pauli observables O = [o1, . . . ,oL] and Pauli mea-
surements P = [p1, . . . ,pM ] are such that

Confε(O;P) :=

L∑
`=1

exp
(
− ε2

2 h(o`;P)
)
≤ δ

2
. (3)

Then, the associated empirical averages (2) obey

|ω̂` − ω`(ρ)| ≤ ε for all 1 ≤ ` ≤ L (4)

with probability (at least) 1− δ.

See Appendix B.1 for a detailed derivation. We call
the function defined in Eq. (3) the confidence bound.
It is a statistically sound summary parameter that
checks whether a set of Pauli measurements (P) al-
lows for confidently predicting a collection of Pauli
observables (O) up to accuracy ε each.

III. RANDOMIZED PAULI
MEASUREMENTS

Intuitively speaking, a small confidence bound (3)
implies a good Pauli estimation protocol. But how
should we choose our M Pauli measurements (P) in
order to achieve Confε(O;P) ≤ δ/2? The random-
ized measurement toolbox [13, 14, 22, 37, 39] provides
a perhaps surprising answer to this question. Let
w(o`) denote the weight of Pauli observable o`, i.e. the
number of qubits on which the observable acts non-
trivially: w(o`) =

∑n
k=1 1 {o`[k] 6= I}. These weights

capture the probability of hitting o` with a completely
random measurement string: Prp [o` B p] = 1/3w(o`).
In turn, a total of M randomly selected Pauli mea-
surements will on average achieve EP[h(o`;P)] =
M/3w(o`) hits, regardless of the actual Pauli observ-
able o` in question. This insight allows us to compute
expectation values of the confidence bound (3):

EP [Confε(O;P)] =

L∑
`=1

(
1− ν/3w(o`)

)M
, (5)

where ν = 1 − exp(−ε2/2) ∈ (0, 1). Each of the
L terms is exponentially suppressed in ε2M/3w(o`).
Concrete realizations of a randomized measurement
protocol are extremely unlikely to deviate substan-
tially from this expected behavior, see e.g. [16]. Com-
bined with Lemma 1, this observation implies a pow-
erful error bound.

Theorem 1 (Theorem 3 in Ref. [16]). Empirical av-
erages (2) obtained from M randomized Pauli mea-
surements allow for ε-accurately predicting L Pauli
expectation values tr(Oo1ρ), . . . , tr(OoL

ρ) up to addi-
tive error ε given that M ∝ log(L)max` 3

w(o`)/ε2.

In particular, order log(L) randomized Pauli mea-
surements suffice for estimating any collection of L
low-weight Pauli observables. It is instructive to com-
pare this result to other powerful statements about
randomized measurements, most notably the “clas-
sical shadow” paradigm [22, 39]. For Pauli observ-
ables and Pauli measurements, the two approaches
are closely related. The estimators (2) are actually
simplified variants of the classical shadow protocol
(in particular, they don’t require median of means
prediction) and the requirements on M are also com-
parable. This is no coincidence; information-theoretic
lower bounds from [22] assert that there are scenar-
ios where the scaling M ∝ log(L)max` 3

w(o`)/ε2 is
asymptotically optimal and cannot be avoided.

Nevertheless, this does not mean that randomized
measurements are always a good idea. High-weight
observables do pose an immediate challenge, because
it is extremely unlikely to hit them by chance alone.
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Figure 1: Illustration of the derandomization algorithm (Algorithm 1): We envision M randomized n-qubit measure-
ments as a 2-dimensional array comprised of n×M Pauli labels. Blue squares are placeholders for random Pauli labels,
while green squares denote deterministic assignments (either X,Y or Z). Starting with a completely unspecified ar-
ray (left), the algorithm iteratively checks how a concrete Pauli assignment (red square) affects the confidence bound,
Eq. (3), averaged over all remaining assignments. A simple update rule, Eq. (8), replaces the initially random label
with a deterministic assignment that keeps the remaining confidence bound expectation as small as possible (centre).
Once the entire grid is traversed, no randomness is left (right) and the algorithm outputs M deterministic n-qubit Pauli
measurements.

Algorithm 1 (Derandomization)
Input: measurement budget M , accuracy ε, and L n-

qubit Pauli observables O = [o1, . . . ,oL]

Output: M Pauli measurements P] ∈ {X,Y, Z}n×M

1 function derandomization(O,M, ε)
2 initialize P] = [ [ ] ] (empty n×M array)
3 for m = 1 to M do . loop of over measurements
4 for k = 1 to n do . loop over qubits
5 for W = X,Y, Z do compute
6 f(W ) = EP

[
Confε(O;P)|

P],P[k,m] = W
]

7 (see Eq. (6) for a precise formula)
8 P][k,m]← argminW∈{X,Y,Z}f(W )

9 output P] ∈ {X,Y, Z}n×M

IV. DERANDOMIZED PAULI
MEASUREMENTS

The main result of this work is a procedure for
identifying “good” Pauli measurements that allow for
accurately predicting many (fixed) Pauli expectation
values. This procedure is designed to interpolate be-
tween two extremes: (i) completely randomized mea-
surements (good for predicting many local observ-
ables) and (ii) completely deterministic measurements
that directly measure observables sequentially (good
for predicting few global observables).

Note that we can efficiently compute concrete con-
fidence bounds (3), as well as expected confidence
bounds averaged over all possible Pauli measure-
ments (5). Combined, these two formulas also allow
us to efficiently compute expected confidence bounds
for a list of measurements that is partially determin-
istic and partially randomized. Suppose that P] sub-
sumes deterministic assignments for the first (m− 1)
Pauli measurements, as well as concrete choices for
the first (k − 1) Pauli labels of the m-th measure-
ment, see Fig. 1 (center). There are three possible
choices for the next Pauli assignment: P][k,m] = W
with W = X,Y, Z. For each choice, we can explicitly

compute the resulting conditional expectation value:

EP

[
Confε(O;P)|P],P[k,m] =W

]
(6)

=

L∑
`=1

exp

(
− ε2

2

m−1∑
m′=1

n∏
k′=1

1
{
o`[k

′] B P][k′,m′]
})

×

(
1− ν 1 {o`[k] BW}

3w¬k(o`)

k−1∏
k′=1

1
{
o`[k

′] B P][k′,m]
})

×
(
1− ν3−w(o`)

)M−m
,

where ν = 1 − exp(−ε2/2), w¬k(o`) = w([o`[k +
1], . . . ,o`[n]]) and o`[k

′] B P][k′,m] if o`[k
′] = I or

o`[k
′] = P][k′,m]. This formula allows us to build de-

terministic measurements one Pauli-label at a time.
We start by envisioning a collection of M com-

pletely random n-qubit Pauli measurements. That
is, each Pauli label is random and Eq. (5) cap-
tures the expected confidence bound averaged over all
3n × 3M = 3n+M assignments. There are three possi-
ble choices for the first label in the first Pauli measure-
ment: P[1, 1] = X, P[1, 1] = Y and P[1, 1] = Z. At
least one concrete choice does not further increase the
confidence bound averaged over all remaining Pauli
signs:

min
W∈{X,Y,Z}

EP [Confε(O;P)|P[1, 1] =W ] (7)

≤ 1
3

∑
W∈{X,Y,Z}

EP [Confε(O;P)|P[1, 1] =W ]

=EP [Confε(O;P)] .

Crucially, Eq. (6) allows us to efficiently identify a
minimizing assignment:

P][1, 1] = argmin
W∈{X,Y,Z}

EP [Confε(O;P)|P[1, 1] =W ]

(8)
Doing so, replaces an initially random single-qubit
measurement setting by a concrete Pauli label that
minimizes the conditional expectation value over all
remaining (random) assignments. This procedure is
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known as derandomization [1, 35, 45] and can be iter-
ated. Fig. 1 provides visual guidance, while pseudo-
code can be found in Algorithm 1. There are a
total of n × M iterations. Step (k,m) is contin-
gent on comparing three conditional expectation val-
ues EP

[
Confε(O;P)|P],P[k,m] =W

]
and assign-

ing the Pauli label that achieves the smallest score.
These update rules are constructed to ensure that
(appropriate modifications of) Eq. (7) remain valid
throughout the procedure. Combining all of them
implies the following rigorous statement about the re-
sulting Pauli measurements P].

Theorem 2 (Derandomization promise). Algo-
rithm 1 is guaranteed to output Pauli measure-
ments P] with below average confidence bound:
Confε(O;P]) ≤ EP [Confε(O;P)].

We see that derandomization produces determinis-
tic Pauli measurements that perform at least as favor-
ably as (averages of) randomized measurement pro-
tocols. But the actual difference between random-
ized and derandomized Pauli measurements can be
much more pronounced. In the examples we consid-
ered, derandomization reduces the measurement bud-
get M by at least an order of magnitude, compared
to randomized measurements. Furthermore, because
Algorithm 1 implements a greedy update procedure,
we have no assurance that our derandomized mea-
surement procedure is globally optimal, or even close
to optimal. Using dynamic programming, the deran-
domization algorithm runs in time O(nML); see Ap-
pendix C.3 for a detailed implementation.

V. NUMERICAL EXPERIMENTS

The ability to accurately estimate many Pauli ob-
servables is an essential subroutine for variational
quantum eigensolvers (VQE) [19, 29, 38, 40, 42]. Ran-
domized Pauli measurements [16, 22] – also known as
classical shadows in this context – offer a conceptu-
ally simple solution that is efficient both in terms of
quantum hardware and measurement budget.
Derandomization can and should be viewed as a re-

finement of the original classical shadows idea. Sup-
ported by rigorous theory (Theorem 2), this refine-
ment is only contingent on an efficient classical pre-
processing step, namely running Algorithm 1. It
does not incur any extra cost in terms of quantum
hardware and classical post-processing, but can lead
to substantial performance gains. Numerical experi-
ments visualized in Ref. [22, Figure 5] have revealed
unconditional improvements of about one order of
magnitude for a particular VQE experiment [32] (sim-
ulating quantum field theories).

In this section, we present additional numerical
studies that support this favorable picture. These
address a slight variation of Algorithm 1 that does
not require fixing the total measurement budgetM in
advance. We focus on the electronic structure prob-
lem: determine the ground state energy for molecules
with unknown electronic structure. This is one of the

most promising VQE applications in quantum chem-
istry and material science. Different encoding shemes
– most notably Jordan-Wigner (JW) [27], Bravyi-
Kitaev (BK) [5] and Parity (P) [5, 44] – allow for map-
ping molecular Hamiltonians to qubit Hamiltonians
that correspond to sums of Pauli observables. Several
benchmark molecules have been identified whose en-
coded Hamiltonians are just simple enough for an ex-
plicit classical minimization, so that we can compare
Pauli estimation techniques with the exact answer.

Fig. 2 illustrates one such comparison. We fix a
benchmark molecule BeH2, a Bravyi-Kitaev encod-
ing (BK) and plot the ground state energy approx-
imation error against the number of Pauli measure-
ments. The plot highlights that derandomization
outperforms the original classical shadows procedure
(randomized Pauli measurements) [22], locally-biased
classical shadows [18], and another popular technique
known as largest degree first (LDF) grouping [17, 46].
The discrepancy between randomized and derandom-
ized Pauli measurements is particularly pronounced.

This favorable picture extends to a variety of other
benchmark molecules and other encoding schemes, see
Table 3. For a fixed measurement budget, derandom-
ization consistently leads to a smaller estimation er-
ror than other state-of-the-art techniques. One could
also repeat the measurement scheme found by the de-
randomization algorithm multiple times to improve
the estimation error; see Appendix C.4. Finally, we
note that in the presence of measurement noise, the
various approaches we have considered are likely to
suffer about equally, as they were all based on single-
qubit Pauli measurements. One could mitigate such
noise by incorporating recently proposed noise inver-
sion techniques [8, 31].

VI. CONCLUSION AND OUTLOOK

We consider the problem of predicting many Pauli
expectation values from few Pauli measurements. De-
randomization [1, 35, 45] provides an efficient proce-
dure that replaces originally randomized single-qubit
Pauli measurements by specific Pauli assignments.
The resulting Pauli measurements are deterministic,
but inherit all advantages of a fully randomized mea-
surement protocol. Furthermore, the derandomiza-
tion procedure can accurately capture the fine-grained
structure of the observables in question. Predict-
ing molecular ground state energies based on deran-
domized Pauli measurements scales favorably and im-
proves upon many existing techniques [16, 17, 39, 46].
Source code for an implementation of the proposed
procedure is available at [24].

Randomized measurements have also been used to
estimate entanglement entropy [6, 22, 43, 48], topo-
logical invariants [10, 15], benchmark physical devices
[9, 13, 22, 30], and predict outcomes of physical exper-
iments [23]. Derandomization provides a principled
approach for adapting randomized measurement pro-
cedures to fine-grained structure and is closely related
to an algorithmic technique – multiplicative weight
update [2] – commonly used in machine learning and
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Figure 2: BeH2 ground state energy estimation error
(in Hartree) under Bravyi-Kitaev encoding [5] for differ-
ent measurement schemes: The error for derandomized
shadow is the root-mean-squared error (RMSE) over ten
independent runs. The error for the other methods shows
the RMSE over infinitely many runs and can be evaluated
efficiently using the variance of one experiment [17].

Molecule (EGS) Enc. Derand. Local S. LDF Shadow

H2 (−1.86)
JW 0.06 0.13 0.15 0.41
P 0.03 0.14 0.19 0.48
BK 0.06 0.14 0.19 0.75

LiH (−8.91)
JW 0.03 0.12 0.23 0.52
P 0.03 0.16 0.29 0.87
BK 0.04 0.26 0.27 0.40

BeH2 (−19.04)
JW 0.06 0.26 0.37 1.29
P 0.09 0.36 0.49 1.77
BK 0.06 0.49 0.44 0.97

H2O (−83.60)
JW 0.12 0.51 1.02 1.68
P 0.22 0.65 1.63 2.52
BK 0.20 1.17 1.45 3.25

NH3 (−66.88)
JW 0.18 0.59 0.94 3.79
P 0.21 0.83 1.61 2.13
BK 0.12 0.73 1.45 1.89

Table 3: Average estimation error using 1000 measure-
ments for different molecules, encodings, and measurement
schemes: The first column shows the molecule and the cor-
responding ground state electronic energy (in Hartree). We
consider the following abbreviations: derandomized classi-
cal shadow (Derand.), locally-biased classical shadow (Lo-
cal S.), largest degree first (LDF) heuristic and original
classical shadow (Shadow) [22]

game theory. So far, we have only considered estima-
tions of Pauli observables, but measurement design
via derandomization should apply more broadly; we
look forward to applying derandomization to other
tasks such as estimating non-Pauli observables and
entanglement entropies. Additional improvements in
performance might be achieved by modifying the cost
function f(W ) used in Algorithm 1, for example by
greedily assigning more than one single-qubit Pauli
measurement in each iteration.
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