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We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle
twisted bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormaliza-
tion group calculations, we find that small strain values (ε ∼ 0.1− 0.2%) drive a zero-temperature
phase transition between the symmetry-broken “Kramers intervalley-coherent” insulator and a ne-
matic semi-metal. The critical strain lies within the range of experimentally observed strain values,
and we therefore predict that strain is at least partly responsible for the sample-dependent experi-
mental observations.

Experiments on different twisted bilayer graphene8

(TBG) devices, all close to the first magic angle, have9

produced a broad variety of different low-temperature10

phase diagrams. For example, at the charge neutrality11

point (CNP), both semi-metallic [1–6] and insulating [7–12

11] states have been observed. The insulating devices13

are thought to be divided into two groups. In the first14

group [7, 8], one of the graphene sheets is almost per-15

fectly aligned with the hexagonal Boron-Nitride (hBN)16

substrate, which breaks the two-fold rotation symmetry17

and therefore generates mass terms for the Dirac cones18

[12–17] in the single-particle continuum model of TBG19

[18–20]. In the second group of devices [9, 11], those with-20

out substrate alignment, the Coulomb interaction is be-21

lieved to be responsible for the insulating behavior. Both22

analytical and numerical studies [21, 22] of pristine TBG23

at the CNP indeed find an insulating ground state, due24

to spontaneous “Kramers inter-valley coherent” (KIVC)25

order [22]. The KIVC state is thus a promising candidate26

for the CNP insulators in Ref. [9], as well as the |ν| = 227

insulators in general, but cannot explain the semimet-28

als observed in Refs. [1, 3–6]. Moreover, self-consistent29

Hartree-Fock (SCHF) predicts a KIVC gap of ∼ 20 meV30

[22], while experiments measure a global transport gap31

of only ∼ 1 meV [9].32

An important question is thus: what weakens the insu-33

lators in some experimental devices, and destroys them34

in others? Twist-angle disorder is expected to be at35

least partly responsible for this [23–26]. Another possible36

culprit is the presence of strain in the graphene sheets.37

Uniaxial heterostrain is characterized by a parameter ε,38

which scanning tunneling spectroscopy experiments have39

found to be in the range ε = 0.1 − 0.7% [27–29]. Al-40

though these values seem small at face value, strain con-41

tributes to the Hamiltonian as a perturbation of order42

ε~vF /a, which is ∼ 20 meV for ε = 0.5% — precisely43

the energy scale at issue. Further evidence for the im-44

portance of strain comes from symmetry considerations.45

In the absence of strain, models at even integer filling46

show that although the ground state has KIVC order,47

there is a close competitor whose energy is only slightly48

higher: a nematic semi-metal [22, 28, 30–32]. As eluci-49

dated in Ref. [30], the semi-metal has two Dirac points50

close to, but not at, the mini-BZ Γ point, spontaneously51

breaking the three-fold rotational symmetry C3z. The52

shear part of uniaxial strain breaks the C3z symmetry,53

and thus one expects on general grounds that strain will54

lower the energy of the nematic semi-metal relative to55

the rotationally invariant insulating states. However, de-56

spite this expectation, Refs. [22, 30] found that if strain is57

modeled using the phenomenological method of Ref. [33],58

it cannot stabilize the semi-metal.59

This work provides a careful treatment of the effects60

of strain on the correlated insulators using a more real-61

istic model for strained TBG [34]. We find that physical62

strain values can drive a zero-temperature phase transi-63

tion from the KIVC insulator to a semi-metal at even64

integer fillings. Our results at charge neutrality are ob-65

tained using SCHF, and our results at ν = −2 (ν is66

the number of electrons per moiré unit cell relative to67

charge neutrality) using both density-matrix renormal-68

ization group (DMRG) and SCHF. Our DMRG consid-69

ers both valley degrees of freedom, which is essential for70

correctly identifying the even-integer insulators. Similar71

to earlier works on single-valley models [31, 32], we find72

that DMRG and SCHF agree remarkably well. In par-73

ticular, DMRG confirms the presence of KIVC order at74

ν = −2 in the absence of strain.75

Continuum model with strain – To add uniaxial strain76

to the Bistritzer-MacDonald (BM) continuum Hamilto-77

nian [18–20], we follow Ref. [34]. Uniaxial strain is char-78

acterized by the following symmetric matrix:79

S =

(
εxx εxy
εxy εyy

)
= R(ϕ)T

(
ε
−νP ε

)
R(ϕ) , (1)

where νP ≈ 0.16 is the Poisson ratio of graphene. The80

angle ϕ corresponds to the uniaxial strain direction, and81

R(ϕ) is a 2 × 2 rotation matrix. Throughout this work82

we take ϕ = 0, but we have verified that our conclusions83
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do not depend on the choice of ϕ. The strain magnitude84

is determined by the dimensionless parameter ε, which85

in the devices prepared for STM study has values in the86

range ε = 0.1−0.7% [27–29, 35]. Under the combined ef-87

fect of rotation and strain, the coordinates of the carbon88

atoms in the two graphene layers ` = ± of TBG trans-89

form as R`,i →
[
R(`θ/2)− `

2S
]
R`,i =: MT

` R`,i where θ90

is the twist angle. The coordinate transformation matrix91

MT
` is correct to first order in both θ and ε. Note that92

we only consider heterostrain, as it affects the electronic93

structure much more strongly than homostrain [36].94

The continuum Hamiltonian in the presence of uniaxial95

heterostrain for the τ = + valley is given by96

Hτ+ =

(
D+ T (r)
T (r)† D−

)
, (2)

with D` the monolayer Dirac Hamiltonians, and T (r) the97

inter-layer tunneling (Hτ− is then fully specified by time-98

reversal). The Dirac Hamiltonians are given by99

D` = −~vF [M`(−i∇ + A`)−K] · σ , (3)

where σ = (σx, σy) are Pauli matrices acting in sub-100

lattice space, and K = (4π/3a, 0), with a the graphene101

lattice constant, corresponds to location of the τ = +102

valley. Strain shifts the locations of the Dirac points103

via a ‘vector potential’ A` = − `
2
β
√
3

2a (εxx − εyy,−2εxy)104

[37, 38], where β ∼ 3.14 characterizes the dependence of105

the tight-binding hopping strength on the bond length.106

The tunneling term T (r) in Eq. (2) has the same form107

as in the original BM model, but we update the micro-108

scopic parmaeters to follow recent density functional the-109

ory calculations [39–41]. Specifically, we take differing in-110

tra and inter-sublattice interlayer tunneling amplitudes111

wAA = 83 meV and wAB = 110 meV. To account for112

non-zero strain ε, the moiré reciprocal lattice vectors are113

deformed to gj =
[
M−1+ −M−1−

]
Gj , where Gj are the114

reciprocal vectors of undeformed graphene.115

As was shown in Ref. [34, 36], uniaxial heterostrain has116

three important effects on the BM band spectrum: (i)117

while strain preserves C2T symmetry, and hence the sta-118

bility of the two mini Dirac points, the three-fold rotation119

symmetry is broken and the two Dirac points move away120

from the K±-points towards the Γ-point in the mBZ, (ii)121

the two Dirac points are no longer degenerate, but are122

separated in energy by a few meV (thus creating small123

electron and hole pockets at the CNP), and (iii) the band-124

width of the ‘narrow’ bands increases significantly – for125

ε as small as 0.6%, the bandwidth of the narrow bands is126

∼ 50 meV. Below, we investigate the effect of strain on127

the interacting phase diagram of TBG.128

Hartree-Fock at neutrality – We model interacting129
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FIG. 1. Particle-hole gap in the SCHF band spectrum at the
CNP as a function of both twist angle θ and strain ε, for
εr = 6 (left) and εr = 12 (right). The results were obtained
on a 18 × 18 momentum grid, keeping six bands per spin
and valley. The gapped regions have KIVC order, the gapless
regions correspond to a symmetric SM.

TBG as the BM Hamiltonian plus Coulomb interactions:130

H =
∑
k

f†kh(k)fk +
1

2A

∑
q

Vq : ρqρ−q : , (4)

where A is the area of the sample, and f†k,s,τ,m creates131

an electron with momentum k and spin s in the BM132

band m in valley τ . The charge density operators are133

given by ρq =
∑

k f
†
kΛq(k)fk+q, where the form fac-134

tor matrices [Λq(k)](τ,m),(τ ′,n) = δτ,τ ′〈uτ,m,k|uτ,n,k+q〉135

are defined in terms of overlaps between the periodic136

part of the Bloch states of the BM Hamiltonian. The137

interaction is given by a gate screened Coulomb poten-138

tial Vq =
∫

dr eiq·rV (r) = tanh(dsq)[2ε0εrq]
−1. We work139

with a gate distance of ds = 25 nm, and we let the di-140

electric constant εr vary between 6 and 12. In Eq. (4)141

we also project into a subspace where most or all of the142

remote BM valence (conduction) bands are completely143

filled (empty), and m,n run over only those bands whose144

filling is not fixed. The single-particle Hamiltonian h(k)145

contains the BM band energies, a HF contribution from146

the remote filled bands, and a subtraction term [21, 30].147

For more details on the definition of h(k), see Ref. [32].148

Without strain, Ref. [22] found that the ground state149

of H at ν = −2, 0, 2 has a charge gap and spontaneously150

breaks both the valley charge symmetry eiατz , and the151

time-reversal symmetry T = τxK, where K denotes com-152

plex conjugation. However, the product T ′ = eiπτz/2T153

is preserved. Because T ′ = τyK is a (spinless) Kramers154

time-reversal, the insulating ground state was dubbed the155

Kramers inter-valley coherent (KIVC) state [22].156

Fig. 1 shows the HF phase diagram1 at the CNP as157

a function of twist angle and strain magnitude, for both158

εr = 6 and εr = 12. Two phases are clearly visible. The159

1 Throughout this work, we allow HF to break all symmetries,
except for translation symmetry.
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FIG. 2. (a) KIVC order parameter |∆KIVC| :=
1
N

∑
k ||PIVC(k)|| at charge neutrality as a function of ε, ob-

tained with SCHF using θ = 1.05◦, εr = 10 and Nb = 6, 10 or
12 bands per spin and valley. The calculations were done on
a 24× 24 momentum grid. (b) DOS of the SCHF band spec-
trum on a 36 × 36 momentum grid using θ = 1.05◦, εr = 10
and Nb = 6. The edges of the KIVC gap are indicated with
red dots.

region in Fig. 1 with non-zero charge gap has KIVC order.160

The gapless region, on the other hand, corresponds to a161

semi-metal (SM) without spontaneous symmetry break-162

ing. The HF band structure of the SM has two Dirac163

cones close to the Γ-point, and is therefore similar to the164

band structure of the strained BM Hamiltonian (for more165

details, see [42]). The transition from the KIVC state to166

the SM in Fig. 1 occurs at strain values ε ∼ 0.4 − 0.6%167

with εr = 6, and at ε ∼ 0.1− 0.2% with εr = 12. These168

critical values lie exactly in the range of strain values169

observed in STM devices [27–29, 35], from which we con-170

clude that strain plays an important role in TBG. From171

Fig. 1, we also see that the KIVC state is more robust at172

larger θ. Because at ε = 0 the energy difference between173

the KIVC state and the SM depends only weakly on θ174

[22], we attribute this feature to the fact that the active175

bands are less affected by strain at larger θ (in partic-176

ular, the Dirac points remain further away from Γ, and177

the change in bandwidth is smaller).178

In Fig. 2(a) we plot the KIVC order parameter as179

a function of ε. The order parameter is defined as180

|∆KIVC| := 1
N

∑
k ||PIVC(k)||, where N is the number181

of k values and PIVC is the intervalley (τ 6= τ ′) part182

of the KIVC correlation matrix [P(k)](s,τ,m),(s′,τ ′,n) =183

〈f†k,s′,τ ′,nfk,s,τ,m〉. We see that the transition occurs at184

ε∗ ∼ 0.19% if we keep Nb = 6 BM bands per spin and val-185

ley. By increasing Nb, ε∗ shifts to slightly smaller values,186

and converges for Nb = 12. Fig. 2(a) shows a discon-187

tinuity in |∆KIVC|, implying that the transition is first188

order. However, we also find that close to the transition,189

|∆KIVC| decreases by a factor of 20 (using Nb = 12) com-190

pared to its value at ε = 0. We therefore cannot exclude191

that the weakly first-order behavior is an artifact of HF.192

Fig. 2(b) shows the density of states (DOS) obtained193

in SCHF for different ε, interpolating between the KIVC194

y

E/W= − 0.11

0.0

0.5

1.0
E/W= 0.15

0.0

0.5

1.0

x

y

E/W0 = − 0.11

0.0

0.5

1.0

x

E/W0 = 0.15

0.0

0.5

1.0

(a) (b)

(c) (d)

FIG. 3. Normalized LDOS for θ = 1.05◦ and ε = 0.22%.
(a)-(b) LDOS of the self-consistent SM (for εr = 10) at
E/W = −0.11 and E/W = 0.15, where W ∼ 65 meV is
the HF bandwidth. (c)-(d) LDOS of the BM ground state at
E/W0 = −0.11 and E/W0 = 0.15, where W0 ∼ 17 meV is the
BM bandwidth.

insulator and the SM. The dominant feature for both the195

KIVC and SM DOS is a pair of broad peaks separated by196

∼ 50 meV. In the KIVC phase, there is a finite window197

around the Fermi energy where the DOS is zero, which198

decreases with ε and vanishes at the transition. This199

is a subtle feature, however, making it hard to sharply200

distinguish the SM from the KIVC. A finer probe for the201

properties of the SM is the (layer-resolved) local DOS202

(LDOS) [42]. In Fig. 3(a)-(b) we plot the LDOS of the203

SM at energies E/W = −0.11 and E/W = 0.15, where204

W is the HF bandwidth. The LDOS at the AA regions205

shows strong C3z breaking. This strong C3z breaking206

results from interactions, as it does not show up in the207

LDOS of the BM ground state at the same energy ratios208

E/W0 = −0.11 and E/W0 = 0.15, where W0 is the BM209

bandwidth (see Fig. 3(c)-(d) and [42]). These properties210

of the HF LDOS agree with STM experiments [27, 28,211

43]. In particular, Ref. [43] observed strong C3z breaking212

at the CNP, but not at ν = 4. We calculated the LDOS213

at this filling, where the active bands are fully filled, and214

indeed found almost no reconstruction of the BM LDOS215

by interactions, and as a result no strong C3z breaking.216

Finally, strain can be invoked to explain the degenera-217

cies of the Landau fan near the CNP [33, 34] of the SM.218

At low densities quantum oscillations are governed by219

cyclotron orbits around the mini Dirac points, with two220

Dirac points for each of the four iso-spins. When mir-221

ror symmetry (C2x) ensures that the two Dirac points222

are equivalent, the resulting Landau fan will have the223

8-fold degeneracy νφ = ±4,±12,±20, · · · , which is ob-224

served, for example, far from the magic angle. However,225

mirror symmetry is broken by strain: for example, at226

ε = 0.22% and εr = 10, we find that the two Dirac227

points in the same valley are separated in energy by228

∆D ∼ 10 meV. For generic B, this halves the degeneracy,229
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FIG. 4. DMRG results at ν = −2 (spin-polarized) at θ =
1.05◦ and εr = 10. (a) Scaling collapse of the KIVC correlator
CK(x, ξK) at ε = 0. (b) Transition from KIVC to SM with
strain. KIVC correlation length ξK , average entropy S̄vN ,
the DMRG KIVC correlator ΣC = 10

∑
x CK(x) (scaled for

visibility), and the HF KIVC correlator |∆KIVC| as a function
of ε. (c) Scaling of ξK with bond dimension at ε = 0. DMRG
parameters: Ly = 6, Φy = 0, χ ≈ 2048 for (b), and the
Hamiltonian, Eq. (4), is represented to accuracy better than
0.1 meV. All quantities are defined in the text.

νφ = 0,±4,±8,±12, · · · , as observed in most magic-angle230

experiments [2, 3]. When |ν| & 0.25, the cyclotron orbits231

of the two Dirac points merge and form one connected or-232

bit with a 2π-Berry phase. Because the resulting Landau233

fan νφ = ±4,±8,±12, · · · has the same 4-fold degeneracy234

as the ∆D-split Dirac points, the conclusion is the same.235

However we note that some devices show a crossover from236

a low-B 8-fold degeneracy to a high-B 4-fold degeneracy237

(for example, at B ∼ 1T in Ref. [44]). It may be that238

in devices where the strain configuration happens to pro-239

duce a small ∆D, the mirror-breaking manifests in the240

terms which are linear in B.241

DMRG at ν = −2 – While SCHF is a mean field ap-242

proach, we may further confirm the existence of a strain-243

induced transition using unbiased DMRG calculations.244

In Ref. [22], it was argued that in the absence of strain,245

the ground state of the interacting Hamiltonian H at246

fillings ν = ±2 is a spin polarized version of the KIVC247

state at neutrality. This claim was further substanti-248

ated by Refs. [45–47]. Following the methods devel-249

oped in Refs. [31, 32, 48], here we use infinite DMRG250

to study H compactified onto a infinitely long cylinder251

of circumference Ly moire cells. SCHF finds that the252

ground state is perfectly spin polarized for ε . 0.2%, so253

we accelerate our DMRG calculations by assuming full254

spin polarization of the narrow bands at ν = −2, while255

keeping both valleys [42]. Projecting into the narrow256

bands, our computational basis for the four remaining257

active bands consists of hybrid Wannier orbitals that are258

localized in the x-direction, but have a well-defined mo-259

mentum ky = 2πn/Ly.260

The ground state of the unstrained model at ν = −2 is261

expected to have KIVC order, and thus to spontaneously262

break the U(1) valley symmetry. The Hohenberg-263

Mermin-Wagner (HMW) theorem, however, forbids such264

continuous symmetry breaking on the quasi-1D cylin-265

der geometry used by DMRG [49, 50]. Instead, the266

KIVC phase will manifest as algebraic long-range order267

[51] CK(x) := 〈∆+
K(x)∆−K(0)〉 ∼ x−η(Ly), where ∆±K(x)268

are operators at position x which have valley charge ±2269

and satisfy T ′−1O±K(x)T ′ = O∓K(x) [42]. The expo-270

nent η(Ly) depends on the circumference, and satisfies271

η(∞) = 0. An additional complication for identifying272

the KIVC phase using DMRG is that at any finite DMRG273

bond dimension χ (i.e., numerical accuracy), the ground274

state has exponentially decaying correlations. This com-275

plication can be overcome by using “finite entanglement276

scaling” [52–54] to characterize algebraic order via a scal-277

ing collapse as χ → ∞. Denoting the finite-χ induced278

correlation length as ξK [Fig. 4(c)], the KIVC correlator279

can be written as a general function CK(x, ξK). In the280

KIVC phase, we expect this function to satisfy the scaling281

relation CK(x, ξK) = ξ−ηK CK(x/ξK , 1), which allows us282

to perform a scaling collapse of the data obtained at dif-283

ferent χ. In Fig. 4(a), we find an excellent data collapse284

for χ ranging between 1024 and 3072, from which we285

conclude that DMRG indeed finds a KIVC ground state.286

Note that we find a very small exponent η(6) ∼ 0.06 [42],287

so there is no regime of algebraic decay clearly visible in288

Fig. 4(a).289

Fig. 4 (b) shows the effect of adding strain. Both290

the correlation length ξK and summed correlator ΣC :=291 ∑
x CK(x) measure the amount of KIVC correlations in292

the ground state. They are both order one for small293

strain, and decrease monotonically with ε. For ε &294

0.07%, however, ξK and ΣC plateau at a small value, in-295

dicating that the algebraic KIVC order is destroyed. For296

strain values larger than ∼ 0.07%, we find no evidence297

for symmetry breaking in the DMRG ground state. In298

particular, we have verified that DMRG does not dou-299

ble the unit cell, which excludes the stripe phase dis-300

cussed previously for single-valley models [31, 32]. The301

absence of symmetry breaking in DMRG is consistent302

with HF, where we find a symmetric SM at large ε303

[42]. Fig 4(b) plots the SCHF order parameter |∆KIVC|,304

which shows a transition from the KIVC state to the305

SM at a strain value ε ∼ 0.1%, close to where the alge-306

braic KIVC order disappears in DMRG. While the be-307

haviour of the DMRG correlation length is consistent308

with a first-order transition, much larger bond dimen-309

sions — and cylinder circumferences — would be needed310

to decide this issue. To confirm that the large strain311

phase found with DMRG is the same SM obtained in312

SCHF, we compute the averaged single particle entropy313

S̄vN := − 1
N

∑
k tr (P(k) lnP(k)). This quantity is zero314

iff the DMRG ground state is a Slater determinant. Fig315

4(b) shows that S̄vN is negligibly small at ε & 0.07% (at316

smaller ε, HMW implies the KIVC state cannot be a sym-317

metry breaking Slater determinant in DMRG, so S̄vN is318
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order unity). It thus follows that (i) SCHF and DMRG319

agree closely for all strain, and are essentially identical at320

large ε and, (ii) the transition in DMRG is indeed from321

the KIVC state to the SM.322

Discussion – The results presented in this work show323

that strain is likely responsible for the semi-metallic be-324

havior and strong C3z breaking observed at the CNP of325

most TBG devices (for related discussions of the CNP326

physics, see Refs. [55, 56]). C3z breaking has also been327

observed in TBG near ν = −2 [4], and was discussed in328

various theoretical contexts in Refs. [57–60]. From our329

DMRG and SCHF results, we found that TBG couples330

strongly to strain both at ν = 0 and ν = −2. Two im-331

portant questions that follow from this are (i) whether332

the strong coupling to strain persists to ν = −2− δ with333

δ ∼ 0.1 − 0.9 (where nematicity was observed in experi-334

ment [4]), and (ii) whether strain is important for super-335

conductivity. Our findings also invigorate the question336

about the origin of the insulating behavior consistently337

observed at ν = −2, as we find that within the model338

studied here, strain drives the KIVC - SM transition at339

roughly the same ε for both ν = 0 and ν = −2. One pos-340

sibility is that band structure effects we have neglected,341

such as lattice relaxation [39, 41] or non-local inter-layer342

tunneling [41, 61] stabilize the insulators at ν = ±2 at343

larger strain values.344
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