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Building on previous developments [1–3], we show that the Diagrammatic Monte Carlo technique
allows to compute finite temperature response functions directly on the real-frequency axis within
any field-theoretical formulation of the interacting fermion problem. There are no limitations on the
type and nature of the system’s action or whether partial summation and self-consistent treatment
of certain diagram classes are used. In particular, by eliminating the need for numerical analytic
continuation from a Matsubara representation, our scheme allows to study spectral densities of
arbitrary complexity with controlled accuracy in models with frequency-dependent effective interac-
tions. For illustrative purposes we consider the problem of the plasmon line-width in a homogeneous
electron gas (jellium).

Introduction. The promise of the Diagrammatic Monte
Carlo (DiagMC) technique–stochastic sampling of high-
order connected Feynman diagrams with extrapolation
to the infinite diagram order limit–in solving the com-
putational complexity problem for interacting fermions
[4] ultimately rests on our ability to formulate a field-
theoretical approach with a quickly converging series ex-
pansion. As is often the case in the strongly corre-
lated regime, an expansion based on the original inter-
action potentials, V0, and “bare” fermion propagators,
G0, does not converge. To proceed, the problem is trans-
formed identically by incorporating certain classes of di-
agrams and interaction effects into an alternative “start-
ing point”. This introduces new effective propagators,
G̃, interactions, U , and counter terms, Λ, in terms of
which an alternative diagrammatic expansion is formu-
lated. Shifted and homotopic action tools [5, 6] allow to
achieve this goal generically by expressing final answers
as Taylor series in powers of the auxiliary parameter ξ,
with ξ = 1 corresponding to the original problem, and
ensuring that the resulting series converge for any ξ < 1.

To connect finite-temperature calculations with exper-
imental probes not based on thermodynamic potentials,
one needs to compute response functions at real fre-
quencies, or spectral densities. The notorious problem
faced by simulations performed in the Matsubara rep-
resentation is a need for a numerical analytic continua-
tion (NAC) procedure from the imaginary to the real-
frequency domain. In general, NAC is only meaningful
conditionally (by imposing constraints on the answer),
and even extraordinary accurate Monte Carlo (MC) data
cannot help resolve fine spectral features following broad
lower-frequency peaks, or narrow Drude peaks in opti-
cal conductivity [7]. Until recently, the infamous NAC
problem standing on the way of the accurate theoreti-
cal description of experimentally relevant observables was
considered unavoidable.

The breakthrough development in the context of the
DiagMC technique was reported in Ref. [1] for the Hub-
bard model. The key observation was that for expansions

in terms of G0 and V0, the summation over all inter-
nal fermionic Matsubara frequencies, ωn = 2πT (n+ 1/2)
with integer n, can be performed analytically with the
help of the Cauchy formula
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and automated for arbitrary high-order diagrams. Here
nj ≡ n(aj) = [eaj/T + 1]−1 is the Fermi-Dirac func-
tion. Bose-Einstein function is related to n(a) by N(a) =
−n(a + iπT ). Thus, summation over bosonic frequency
ωm is included in Eq. (1) by the transformation iωm−a =
iωm+1/2− a′ with a′ = a+ iπT . [For the imaginary time
implementation see Refs. [3, 8].] The Wick rotation of
external frequency from the imaginary to the real axis is
then performed analytically by replacing iΩs with Ω+iη,
where η → 0 is positive. The remaining integrals/sums
are sampled by Monte Carlo to compute spectral densi-
ties directly without any need for NAC. [The proposed
below scheme allows to take the η → 0 limit analytically,
see Supplemental material [9].]

The entire procedure relies on (i) the simple pole struc-
ture of the bare Green’s function, G0 = (iωn − εk +
µ)−1, where εk is the bare dispersion relation and µ is
the chemical potential (we suppress the spin index for
brevity), and (ii) a frequency independent interaction po-
tential V0. These requirements are not satisfied when
the diagrammatic expansion is performed in terms of
dressed/renormalized propagators and retarded effective
interactions to produce convergent series in the strongly
correlated regimes. Even if G̃ and U have transparent
analytical structure in the Matsubara representation, the
summation over all internal Matsubara frequencies can-
not be performed analytically any more. For example, in
the random phase approximation (RPA) for the homo-
geneous electron gas (jellium), the polarization operator
in the effective screened interaction, U−1 = V −10 − Π,
is approximated by the finite-temperature version of the
Lindhard function [10]. No diagram with these U -lines
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can be summed over Matsubara frequencies analytically.
It appears that conditions for performing real-

frequency simulations are incompatible with the generic
tools needed to obtain convergent series expansions. In
this work we present a simple solution to this dilemma
and formulate an approach that allows to compute real-
frequency response functions within an arbitrary field-
theoretical setup. To demonstrate how our approach
works in practice, we compute the plasmon line-width,
γpl, in the jellium model as a function of momentum and
temperature. The problem of plasmon decay is under
active study because of its importance for optoelectron-
ics, photovoltaics, photocatalysis, and other applications
(see, for instance, Refs. [11–17] and literature therein).
Contrary to solid state materials where inter-band tran-
sitions and Umklapp processes are possible (and thus the
plasmon line-width can be obtained within the lowest
skeleton order diagrams, in the so-called GW approxi-
mation - see, for instance, Refs. [18, 19]), we find that
meaningful results for γpl in jellium crucially depend on
vertex corrections.

Real-frequency finite-temperature technique. To per-
form the Wick rotation by the substitution iΩs → Ω+iη,
the function in question has to be known analytically.
The key observation leading to solution is that at any
point in the DiagMC simulation, the propagators and in-
teractions used to express the diagram’s contribution are
assumed to be known, either analytically or numerically
(from relatively simple auxiliary simulations). The first
step is to convert this knowledge into spectral densities
and use them to express G̃ and U via

G̃(k, iωn) =
1

π

∫ ∞
−∞

du
A(k, u)

iωn − u
; (2)

U(k, iωs) = V0(k) +
1

π

∫ ∞
−∞

dv
D(k, v)

iωs − v
, (3)

with bosonic Matsubara frequencies ωs = 2πTs. The
second step is to rewrite all diagrammatic contributions
in terms of the A and D functions. This will add integra-
tions over a set of u and v variables on top of momentum
(spin) integrations (sums), which is not a problem for
Monte Carlo methods. However, the dependence of the
integrand on Matsubara frequencies is again a product of
simple poles, meaning that exact summation over all in-
ternal Matsubara indexes can be performed analytically
and the result rotated to the real-frequency axis. [Writ-
ing all propagators and effective interactions in terms of
spectral representations brings additional technical ad-
vantages, see [9].]

Equations (2), (3) were used in Ref. [2] for solving the
self-consistent GW-approximation at T = 0. More im-
portantly, spectral representation for the Green’s func-
tion was employed in Ref. [3] in the context of Ander-
son impurity model to compute the real-frequency re-
sponse using analytic Matsubara integration. However,
it was not realized that taken together Eqs. (1)-(3) offer a

generic solution for obtaining real-frequency response in
an arbitrary field-theoretical formulation of the interact-
ing many body problem, including cases with frequency-
dependent effective interactions.

The rest of this work is devoted to the explicit demon-
stration of how the proposed scheme works in practice
by considering the problem of the plasmon life-time in
jellium.

Starting point. First, we need to construct G̃ and U .
The jellium model is defined as the homogenous electron
gas on a positive neutralizing background

H =
∑
i

k2i
2m

+
∑
i<j

e2

|ri − rj |
− µN, (4)

with m the electron mass. In Fourier representation the
bare interaction potential is given by V0 = 4πe2/q2. We
use the inverse Fermi momentum, 1/kF , and Fermi en-
ergy, εF = k2F /2m, as units of length and energy, re-
spectively, and employ the short-hand notation,

∑
k =

(2π)−3
∫
d3k, for momentum integrals. The definition of

the Coulomb parameter rs in terms of the system number
density, ρ, and Bohr radius is standard: 4πr3s/3 = 1/ρa3B .

Following Ref. [20] in the Matsubara domain, we ex-
pand on top of the self-consistent Hartree-Fock solution
for the Green’s function, and tune the chemical poten-
tial to obtain the desired value of rs. To avoid di-
vergent Fermi-velocity renormalization, this solution is
based on the Yukawa potential, Y (q) = 4πe2/(q2 + κ2),
with appropriately chosen parameter κ [see discussion
below Eq. (8)]. To be specific, G̃−1(k, iωn) = iωn −
εk, where the renormalized dispersion relation εk =
k2/2m − µ + ΣF (k) is iterated using relations ΣF (k) =∑

q Y (q)n(εk−q), see Fig. 1(a), and 2
∑

k n(εk) = ρ, un-
til convergence.

(a)

F: (0):

(b)

(1):

(c)

FIG. 1. (color online) (a) Fock self-energy diagram; (b)-(c)
0-th and 1-st order (with respect to the number of interac-
tion lines) contributions to the polarization operator Π. Solid

and dashed lines represent the fermionic propagators, G̃, and
Yukawa potentials, Y , respectively.

The same Yukawa potential was used in Ref. [20] in
place of the effective interaction potential in the full dia-
grammatic expansion. This choice is not suitable for our
purposes because the plasmon is a collective excitation;
an expansion in powers of Y will fail to describe a basic
process, P → P + e − h, where the plasmon is losing
its energy by emitting electron-hole pairs, unless certain
geometrical series are summed up to infinity.
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These considerations force one to consider effective
interactions based on dynamic screening effects with
“built in” plasmon excitations (see also Section II of
the Supplemental material [9]). It is tempting to start
with U−1 = V −10 − Π(0), where Π(0) is given by the
diagram shown in Fig. 1(b). However, the resulting
plasmon spectrum (derived from the standard condi-
tion U−1(Q,ωpl) = 0) strongly violates an exact hy-
drodynamic relation ω2

pl(Q = 0) = Ω2
pl = 4πe2ρ/m for

translation invariant systems. This problem is elimi-
nated by adding the leading vertex correction, U−1 =
V −10 −Π(0) −Π(1), see Fig. 1(c). The upper inset in the
left panel of Fig. 2 shows that now the plasmon spec-
trum exhibits the proper behavior at Q → 0, following
the standard RPA result in this limit.

To complete the setup, we need to compute the spec-
tral density D in Eq. (3). For this it is sufficient to know
the real and imaginary parts of Π̃ = Π(0) + Π(1) = R+ iI
on the real frequency axis. If we split the total spectral
density into the electron-hole continuum, De−h, and the
singular plasmon pole contribution, Dpl, then (see also
Ref. [21])

De−h = − I

[(V −10 −R)2 + I2]
; (5)

Dpl = πrpl(Q)δ(Ω− ωpl(Q)) if I(Q) = 0, (6)

where rpl = 1/|∂R/∂Ω|ωpl(Q) is the pole residue. Af-
ter summation over Matsubara frequencies, the real-
frequency result for Π̃ reads:

Π̃ = −2
∑
p

Fp+Q,p−2
∑
p,k

Y (p−k)Fp+Q,pFk+Q,k, (7)

Fq1,q2
=

nq1
− nq2

Ω− εq1
+ εq2

+ iη
. (8)

We evaluated momentum integrals in Eq. (7) by stan-
dard Monte Carlo methods on a dense mesh of Q and Ω
points for several values of κ. The optimized perturba-
tion theory strategy [22, 23] would be to choose κ in such
a way that the answer computed up to a given order of
expansion is least sensitive to its arbitrary value. Pre-
vious work in this vein [20] considered static properties
only. For the fully dynamic calculation, one is further
restricted by the condition that the spectral functions
need to be positive for any Ω > 0. With respect to the
low-frequency behavior, optimal values of κ would corre-
spond to the extrema of the Π̃(0, 0, κ) curves, shown in
lower insets of Fig. 2 for rs = 2 and rs = 4. The fact
that both maxima are broad can be used to choose larger
values of κ without loss of accuracy in order to guarantee
that ImΠ̃(Ω > 0) < 0. Indeed, unless κ is large enough,
ImΠ̃ becomes positive in a finite frequency range, see the
upper right inset in Fig. 2. Our strategy then is to choose
large enough κ as close as possible to the extremum of

Π̃(0, 0, κ), leading to κ/kF = 1.2 and κ/kF = 1.8 for
rs = 2 and rs = 4, respectively. The corresponding real
and imaginary parts of Π̃ are presented in Fig. 2. At
moderate values of rs the qualitative behavior remains
similar to that in the RPA. The smoothing of the sin-
gularities in the polarization operator is a temperature
effect.

F

Re

Im

(0,0)/ RPA(0,0)

rS=2 pl F

Q kF

pl

F

Re

Im

(0,0)/ RPA(0,0)

rS=4

FIG. 2. (color online) Polarization function, Π̃ = Π(0) + Π(1),
dependence on frequency at low temperature T/εF = 0.02.
Left panel: rs = 2, Q/kF = 0.098437, κ/kF = 1.2. Right
panel: rs = 4, Q/kF = 0.103711, κ/kF = 1.8. Blue and red

curves represent the real and imaginary parts of Π̃, respec-
tively. Lower insets show Π̃(Q = 0,Ω = 0)/ΠRPA(Q = 0,Ω =
0) as a function of κ for rs = 2 (left) and rs = 4 (right). In
the limit κ→ ∞ Π(0, 0) saturates at 3ρ/2εF equal to 0.05066
in our units. The upper left inset shows the low-momentum
part of the plasmon dispersion for rs = 2 within the (i) RPA

(solid black curve), (ii) Π̃ = Π(0) approximation (blue cir-

cles), and (iii) Π̃ with vertex correction (red diamonds). The

upper right inset shows how ImΠ̃ for rs = 4 changes sign for
κ/kF < 1.8. All error bars are smaller than symbol sizes.

Plasmon line-width. In our formulation, the lowest-
order polarization diagrams contributing to the finite
plasmon life-time are shown in Fig. 3. To avoid double-
counting, one has to subtract Yukawa potentials from
effective screened interactions, because the correspond-
ing contributions are already included in the definitions
of G̃ and U functions. The sum of all diagrams in Fig. 3
will be denoted as ∆Π.

(a) (b) (c)

U-Y U-Y U-Y

FIG. 3. (color online) Lowest-order polarization diagrams

within the formulation based on G̃ and U .

Accounting for the first two diagrams in Fig. 3 would
be equivalent to using the so-called GW-approximation
perturbatively. It is not surprising then that these two
contributions strongly violate another exact hydrody-
namic condition, Π(Q → 0,Ω 6= 0) ∝ Q2, see Ref. [24],
because a similar situation takes place in the GW-
approximation [2, 25]. If we were to compute the plasmon
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line-width on the basis of the first two diagrams in Fig. 3,
we would find that the plasmon excitation is completely
destroyed at small momenta. Indeed, the data presented
in the left panel of Fig. 4 extrapolate to finite values at
Q = 0, leading to a divergent contribution after multi-
plication by the Coulomb potential (see also Fig.4 of the
Supplemental material [9]).

It is thus crucial not to miss the vertex correction given
by the diagram (c) in Fig. 3. It compensates diagrams
(a) and (b) almost perfectly for all values of Q, and
restores the proper ∝ Q2 behavior of the (a)+(b)+(c)
sum at small momenta, see right panel of Fig. 4. The
involved analytical expressions for all diagrams (before
Monte Carlo integration over internal momenta) can be
found in the Supplemental material [9] (see Section I).
While their derivation on the basis of Cauchy formula (1)
is straightforward, the number of terms rapidly increases
with the number of frequency dependent lines, not to
mention that U functions (3) contain three distinct con-
tributions: frequency independent part, plasmon pole,
and electron-hole continuum.

-Im ( pl)

Q/kF

T/ F=0.02

rS=2 rS=4

Q/kF

Q2

rS=2

rS=4
T/ F=0.02

-Im ( pl)

FIG. 4. (color online) Minus imaginary part of the polariza-
tion operator contributions pictured in Fig. 3 as functions of
momentum for Ω = ωpl(Q) and T/εF = 0.02. Left panel:
Upper curves are contributions from the sum of diagrams (a)
and (b) for rs = 2 (dashed with squares), and rs = 4 (dot-
ted with circles). Lower curves are contributions from the
diagram (c) for rs = 2 (dashed with triangles), and rs = 4
(dotted with diamonds) Right panel: The sum of diagrams
(a), (b), and (c) for rs = 2 (red dashed curve with trian-
gles) and rs = 4 (blue dashed curve with diamonds). The
Q2-dependence (black dotted curve) is added for comparison.
All error bars are smaller than symbol sizes.

After evaluating the imaginary part of ∆Π(Q,Ω =
ωpl(Q)) we obtain the plasmon line-width from

γpl(Q,T ) = −rpl(Q,T )Im∆Π(Q, ωpl(Q,T),T). (9)

[At small momenta rpl ≈ V0ωpl/2 ∝ Q−2.] Since the final
result for γpl is much smaller than ωpl there is no need
for performing a frequency scan. We have verified that
the answer does not change when Im∆Π is computed at
frequencies ωpl ± γpl.

Our final results for the plasmon line-width on the
basis of diagrams with one U -line are discussed in

Fig. 5. All data are presented as dimensionless ratios
γpl(Q,T )/ωpl(Q,T ) to immediately see when plasmon
excitations remain well-defined. This appears to be the
case all the way to the plasmon spectrum end point for
both values of rs when the temperature is low. The line-
width saturates to a finite value in the Q → 0 limit be-
cause the Q2-dependence of Im∆Π is compensated by
the divergence of the Coulomb potential present in the
definition of the plasmon residue.

The answer is also finite in the T → 0 limit. This
can be understood on the basis of spectral density for
two (e − h) excitations that overlaps with the plasmon
peak [21]. Thus there exist kinematically allowed decay
channels for Q = 0 plasmons excited from the ground
state of the system. Somewhat surprising is the fact that
the line-width remains rather small even for large vales
of rs. Finite-temperature corrections are linear at values
T/εF � 1 with a much stronger temperature dependence
emerging at T/εF > 1.

Q/kF

rS=2

0.02

T/ F=0.20

0.10

pl pl

pl pl

T/ F

Q/kF=0.4

0.3
0.2
0.1

T

Q/kF

0.02

pl pl

T/ F=0.10

0.05

rS=4pl pl

T/ F

Q/kF=0.6

0.5
0.4
0.3
0.1

T

FIG. 5. (color online) Plasmon line-width to plasmon fre-
quency ratio as a function of momentum at different temper-
atures for rs = 2 (left panel) and 4 (right panel). The black
dotted lines in both panels show results extrapolated to the
T → 0 limit using parabolic fits. Temperature dependence
for different values of Q is shown in insets.

Higher order contributions. Our reformulation of the
diagrammatic expansion in terms of G̃ and U is exact,
and one can proceed with computing higher-order dia-
grams using standard rules. We illustrate some of the
second-order diagrams and process them in the Supple-
mental material [9] (see Section III). While summation
over internal Matsubara frequencies allows to perform
calculations directly on the real-frequency axis, it also
brings additional computational challenges. Using two
next-order diagrams as an example, in [9] we demonstrate
that processing Matsubara sums “by hand” quickly leads
to expressions of overwhelming complexity (the remain-
ing momentum integrals are done by standard Monte
Carlo techniques). Since the Cauchy formula (1) is recur-
sive, it should be possible to fully automate the process,
similarly to what was done in Ref. [1] for the case when
only fermionic propagators were frequency dependent.

Given that certain groups of diagrams feature strong
compensation, an efficient algorithm would need to com-
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bine them analytically (see also Ref. [20]). We see clear
advantages in implementing the recursive scheme for ob-
taining Taylor expansions from skeleton diagrams [26],
because it automatically groups irreducible diagrams and
reduces the number propagators and interaction lines.
This scheme also significantly simplifies processing of
counter terms, and eliminates higher order poles in Mut-
subara sums.

Conclusion. Building on previous developments [1–3],
we report a solution to the problem of computing finite-
temperature response functions on the real frequency axis
using Feynman diagrams for an arbitrary field-theoretical
formulation of the interacting problem. This includes
problems with frequency-dependent effective interactions
and dressed, renormalized, or self-consistent treatments
required for producing convergent expansions. Spec-
tral densities (of arbitrary complexity) for experimen-
tally relevant observables (optical conductivity, resonant
inelastic X-ray spectroscopy, neutron scattering, excita-
tion life-times, etc.) can be computed with an accuracy
that was never possible before. Realistically, contribution
from diagrams up to sixth order may be reached.

To illustrate how the technique works, we used it to
compute the leading processes contributing to the finite
plasmon line-with within the jellium model, and stud-
ied the line-width dependence on momentum and tem-
perature for moderate values of the Coulomb parameter
rs. The increase of the interaction strength leads to a
decrease of the plasmon life-time, but nevertheless the
plasmon remains well defined. One important qualitative
result is the necessity to include vertex corrections in or-
der to ensure the obtained results do not violate general
principles. Future work will aim at developing efficient
schemes for generating and processing real-frequency ex-
pressions for high-order diagrams to gain full control over
systematic errors resulting from the series truncation.
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